Step |
Hyp |
Ref |
Expression |
1 |
|
dfdmf.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
dfdmf.2 |
⊢ Ⅎ 𝑦 𝐴 |
3 |
|
df-dm |
⊢ dom 𝐴 = { 𝑤 ∣ ∃ 𝑣 𝑤 𝐴 𝑣 } |
4 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑤 |
5 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑣 |
6 |
4 2 5
|
nfbr |
⊢ Ⅎ 𝑦 𝑤 𝐴 𝑣 |
7 |
|
nfv |
⊢ Ⅎ 𝑣 𝑤 𝐴 𝑦 |
8 |
|
breq2 |
⊢ ( 𝑣 = 𝑦 → ( 𝑤 𝐴 𝑣 ↔ 𝑤 𝐴 𝑦 ) ) |
9 |
6 7 8
|
cbvexv1 |
⊢ ( ∃ 𝑣 𝑤 𝐴 𝑣 ↔ ∃ 𝑦 𝑤 𝐴 𝑦 ) |
10 |
9
|
abbii |
⊢ { 𝑤 ∣ ∃ 𝑣 𝑤 𝐴 𝑣 } = { 𝑤 ∣ ∃ 𝑦 𝑤 𝐴 𝑦 } |
11 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑤 |
12 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
13 |
11 1 12
|
nfbr |
⊢ Ⅎ 𝑥 𝑤 𝐴 𝑦 |
14 |
13
|
nfex |
⊢ Ⅎ 𝑥 ∃ 𝑦 𝑤 𝐴 𝑦 |
15 |
|
nfv |
⊢ Ⅎ 𝑤 ∃ 𝑦 𝑥 𝐴 𝑦 |
16 |
|
breq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 𝐴 𝑦 ↔ 𝑥 𝐴 𝑦 ) ) |
17 |
16
|
exbidv |
⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑦 𝑤 𝐴 𝑦 ↔ ∃ 𝑦 𝑥 𝐴 𝑦 ) ) |
18 |
14 15 17
|
cbvabw |
⊢ { 𝑤 ∣ ∃ 𝑦 𝑤 𝐴 𝑦 } = { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } |
19 |
3 10 18
|
3eqtri |
⊢ dom 𝐴 = { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } |