Metamath Proof Explorer


Theorem dfec2

Description: Alternate definition of R -coset of A . Definition 34 of Suppes p. 81. (Contributed by NM, 3-Jan-1997) (Proof shortened by Mario Carneiro, 9-Jul-2014)

Ref Expression
Assertion dfec2 ( 𝐴𝑉 → [ 𝐴 ] 𝑅 = { 𝑦𝐴 𝑅 𝑦 } )

Proof

Step Hyp Ref Expression
1 df-ec [ 𝐴 ] 𝑅 = ( 𝑅 “ { 𝐴 } )
2 imasng ( 𝐴𝑉 → ( 𝑅 “ { 𝐴 } ) = { 𝑦𝐴 𝑅 𝑦 } )
3 1 2 eqtrid ( 𝐴𝑉 → [ 𝐴 ] 𝑅 = { 𝑦𝐴 𝑅 𝑦 } )