| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dfeqvrels2 | 
							⊢  EqvRels   =  { 𝑟  ∈   Rels   ∣  ( (  I   ↾  dom  𝑟 )  ⊆  𝑟  ∧  ◡ 𝑟  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							idrefALT | 
							⊢ ( (  I   ↾  dom  𝑟 )  ⊆  𝑟  ↔  ∀ 𝑥  ∈  dom  𝑟 𝑥 𝑟 𝑥 )  | 
						
						
							| 3 | 
							
								
							 | 
							cnvsym | 
							⊢ ( ◡ 𝑟  ⊆  𝑟  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑟 𝑦  →  𝑦 𝑟 𝑥 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							cotr | 
							⊢ ( ( 𝑟  ∘  𝑟 )  ⊆  𝑟  ↔  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑟 𝑦  ∧  𝑦 𝑟 𝑧 )  →  𝑥 𝑟 𝑧 ) )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							3anbi123i | 
							⊢ ( ( (  I   ↾  dom  𝑟 )  ⊆  𝑟  ∧  ◡ 𝑟  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  ↔  ( ∀ 𝑥  ∈  dom  𝑟 𝑥 𝑟 𝑥  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑟 𝑦  →  𝑦 𝑟 𝑥 )  ∧  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑟 𝑦  ∧  𝑦 𝑟 𝑧 )  →  𝑥 𝑟 𝑧 ) ) )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							rabbieq | 
							⊢  EqvRels   =  { 𝑟  ∈   Rels   ∣  ( ∀ 𝑥  ∈  dom  𝑟 𝑥 𝑟 𝑥  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑟 𝑦  →  𝑦 𝑟 𝑥 )  ∧  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑟 𝑦  ∧  𝑦 𝑟 𝑧 )  →  𝑥 𝑟 𝑧 ) ) }  |