Step |
Hyp |
Ref |
Expression |
1 |
|
ax6ev |
⊢ ∃ 𝑥 𝑥 = 𝑦 |
2 |
|
biimpr |
⊢ ( ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( 𝑥 = 𝑦 → 𝜑 ) ) |
3 |
2
|
aleximi |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ∃ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 𝜑 ) ) |
4 |
1 3
|
mpi |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑥 𝜑 ) |
5 |
4
|
exlimiv |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑥 𝜑 ) |
6 |
5
|
pm4.71ri |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
7 |
|
abai |
⊢ ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ↔ ( ∃ 𝑥 𝜑 ∧ ( ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ) |
8 |
|
dfmoeu |
⊢ ( ( ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
9 |
8
|
anbi2i |
⊢ ( ( ∃ 𝑥 𝜑 ∧ ( ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
10 |
6 7 9
|
3bitrri |
⊢ ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |