Metamath Proof Explorer


Theorem dfeumo

Description: An elementary proof showing the reverse direction of dfmoeu . Here the characterizing expression of existential uniqueness ( eu6 ) is derived from that of uniqueness ( df-mo ). (Contributed by Wolf Lammen, 3-Oct-2023)

Ref Expression
Assertion dfeumo ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )

Proof

Step Hyp Ref Expression
1 ax6ev 𝑥 𝑥 = 𝑦
2 biimpr ( ( 𝜑𝑥 = 𝑦 ) → ( 𝑥 = 𝑦𝜑 ) )
3 2 aleximi ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ( ∃ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 𝜑 ) )
4 1 3 mpi ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ∃ 𝑥 𝜑 )
5 4 exlimiv ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) → ∃ 𝑥 𝜑 )
6 5 pm4.71ri ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) )
7 abai ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) ↔ ( ∃ 𝑥 𝜑 ∧ ( ∃ 𝑥 𝜑 → ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) ) )
8 dfmoeu ( ( ∃ 𝑥 𝜑 → ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
9 8 anbi2i ( ( ∃ 𝑥 𝜑 ∧ ( ∃ 𝑥 𝜑 → ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) )
10 6 7 9 3bitrri ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )