Step |
Hyp |
Ref |
Expression |
1 |
|
dfeven4 |
⊢ Even = { 𝑧 ∈ ℤ ∣ ∃ 𝑖 ∈ ℤ 𝑧 = ( 2 · 𝑖 ) } |
2 |
|
eqcom |
⊢ ( 𝑧 = ( 2 · 𝑖 ) ↔ ( 2 · 𝑖 ) = 𝑧 ) |
3 |
|
2cnd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → 2 ∈ ℂ ) |
4 |
|
zcn |
⊢ ( 𝑖 ∈ ℤ → 𝑖 ∈ ℂ ) |
5 |
4
|
adantl |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → 𝑖 ∈ ℂ ) |
6 |
3 5
|
mulcomd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( 2 · 𝑖 ) = ( 𝑖 · 2 ) ) |
7 |
6
|
eqeq1d |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( ( 2 · 𝑖 ) = 𝑧 ↔ ( 𝑖 · 2 ) = 𝑧 ) ) |
8 |
2 7
|
syl5bb |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( 𝑧 = ( 2 · 𝑖 ) ↔ ( 𝑖 · 2 ) = 𝑧 ) ) |
9 |
8
|
rexbidva |
⊢ ( 𝑧 ∈ ℤ → ( ∃ 𝑖 ∈ ℤ 𝑧 = ( 2 · 𝑖 ) ↔ ∃ 𝑖 ∈ ℤ ( 𝑖 · 2 ) = 𝑧 ) ) |
10 |
|
2z |
⊢ 2 ∈ ℤ |
11 |
|
divides |
⊢ ( ( 2 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 2 ∥ 𝑧 ↔ ∃ 𝑖 ∈ ℤ ( 𝑖 · 2 ) = 𝑧 ) ) |
12 |
10 11
|
mpan |
⊢ ( 𝑧 ∈ ℤ → ( 2 ∥ 𝑧 ↔ ∃ 𝑖 ∈ ℤ ( 𝑖 · 2 ) = 𝑧 ) ) |
13 |
9 12
|
bitr4d |
⊢ ( 𝑧 ∈ ℤ → ( ∃ 𝑖 ∈ ℤ 𝑧 = ( 2 · 𝑖 ) ↔ 2 ∥ 𝑧 ) ) |
14 |
13
|
rabbiia |
⊢ { 𝑧 ∈ ℤ ∣ ∃ 𝑖 ∈ ℤ 𝑧 = ( 2 · 𝑖 ) } = { 𝑧 ∈ ℤ ∣ 2 ∥ 𝑧 } |
15 |
1 14
|
eqtri |
⊢ Even = { 𝑧 ∈ ℤ ∣ 2 ∥ 𝑧 } |