| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dff13 | 
							⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							con34b | 
							⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ( ¬  𝑥  =  𝑦  →  ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							df-ne | 
							⊢ ( 𝑥  ≠  𝑦  ↔  ¬  𝑥  =  𝑦 )  | 
						
						
							| 4 | 
							
								3
							 | 
							bicomi | 
							⊢ ( ¬  𝑥  =  𝑦  ↔  𝑥  ≠  𝑦 )  | 
						
						
							| 5 | 
							
								
							 | 
							df-ne | 
							⊢ ( ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 )  ↔  ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							bicomi | 
							⊢ ( ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							imbi12i | 
							⊢ ( ( ¬  𝑥  =  𝑦  →  ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  ↔  ( 𝑥  ≠  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 8 | 
							
								2 7
							 | 
							bitri | 
							⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ( 𝑥  ≠  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							2ralbii | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							anbi2i | 
							⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) )  | 
						
						
							| 11 | 
							
								1 10
							 | 
							bitri | 
							⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) )  |