| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dff13 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 2 |  | con34b | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ( ¬  𝑥  =  𝑦  →  ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 3 |  | df-ne | ⊢ ( 𝑥  ≠  𝑦  ↔  ¬  𝑥  =  𝑦 ) | 
						
							| 4 | 3 | bicomi | ⊢ ( ¬  𝑥  =  𝑦  ↔  𝑥  ≠  𝑦 ) | 
						
							| 5 |  | df-ne | ⊢ ( ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 )  ↔  ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 6 | 5 | bicomi | ⊢ ( ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 7 | 4 6 | imbi12i | ⊢ ( ( ¬  𝑥  =  𝑦  →  ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  ↔  ( 𝑥  ≠  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 8 | 2 7 | bitri | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ( 𝑥  ≠  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 9 | 8 | 2ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 10 | 9 | anbi2i | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 11 | 1 10 | bitri | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) ) |