Metamath Proof Explorer


Theorem dff14b

Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018)

Ref Expression
Assertion dff14b ( 𝐹 : 𝐴1-1𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 dff14a ( 𝐹 : 𝐴1-1𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) ) ) )
2 necom ( 𝑥𝑦𝑦𝑥 )
3 2 imbi1i ( ( 𝑥𝑦 → ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) ) ↔ ( 𝑦𝑥 → ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) ) )
4 3 ralbii ( ∀ 𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) ) ↔ ∀ 𝑦𝐴 ( 𝑦𝑥 → ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) ) )
5 raldifsnb ( ∀ 𝑦𝐴 ( 𝑦𝑥 → ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) )
6 4 5 bitri ( ∀ 𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) )
7 6 ralbii ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) ) ↔ ∀ 𝑥𝐴𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) )
8 7 anbi2i ( ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) ) ) ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) ) )
9 1 8 bitri ( 𝐹 : 𝐴1-1𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) ) )