Step |
Hyp |
Ref |
Expression |
1 |
|
dff14a |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) ) |
2 |
|
necom |
⊢ ( 𝑥 ≠ 𝑦 ↔ 𝑦 ≠ 𝑥 ) |
3 |
2
|
imbi1i |
⊢ ( ( 𝑥 ≠ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑦 ≠ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
4 |
3
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ≠ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
5 |
|
raldifsnb |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 ≠ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
6 |
4 5
|
bitri |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
7 |
6
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
8 |
7
|
anbi2i |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
9 |
1 8
|
bitri |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |