| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dff14a | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 2 |  | necom | ⊢ ( 𝑥  ≠  𝑦  ↔  𝑦  ≠  𝑥 ) | 
						
							| 3 | 2 | imbi1i | ⊢ ( ( 𝑥  ≠  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) )  ↔  ( 𝑦  ≠  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 4 | 3 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  𝐴 ( 𝑦  ≠  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 5 |  | raldifsnb | ⊢ ( ∀ 𝑦  ∈  𝐴 ( 𝑦  ≠  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 6 | 4 5 | bitri | ⊢ ( ∀ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 7 | 6 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 8 | 7 | anbi2i | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) )  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 9 | 1 8 | bitri | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) |