| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fssxp |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) |
| 2 |
|
ffun |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → Fun 𝐹 ) |
| 3 |
|
fdm |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → dom 𝐹 = 𝐴 ) |
| 4 |
3
|
eleq2d |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝐴 ) ) |
| 5 |
4
|
biimpar |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ dom 𝐹 ) |
| 6 |
|
funfvop |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ) |
| 7 |
2 5 6
|
syl2an2r |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ) |
| 8 |
|
df-br |
⊢ ( 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ↔ 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ) |
| 9 |
7 8
|
sylibr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ) |
| 10 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
| 11 |
|
breq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑥 𝐹 𝑦 ↔ 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ) ) |
| 12 |
10 11
|
spcev |
⊢ ( 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) → ∃ 𝑦 𝑥 𝐹 𝑦 ) |
| 13 |
9 12
|
syl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 𝑥 𝐹 𝑦 ) |
| 14 |
|
funmo |
⊢ ( Fun 𝐹 → ∃* 𝑦 𝑥 𝐹 𝑦 ) |
| 15 |
2 14
|
syl |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ∃* 𝑦 𝑥 𝐹 𝑦 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ∃* 𝑦 𝑥 𝐹 𝑦 ) |
| 17 |
|
df-eu |
⊢ ( ∃! 𝑦 𝑥 𝐹 𝑦 ↔ ( ∃ 𝑦 𝑥 𝐹 𝑦 ∧ ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
| 18 |
13 16 17
|
sylanbrc |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑦 𝑥 𝐹 𝑦 ) |
| 19 |
18
|
ralrimiva |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ) |
| 20 |
1 19
|
jca |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ) ) |
| 21 |
|
xpss |
⊢ ( 𝐴 × 𝐵 ) ⊆ ( V × V ) |
| 22 |
|
sstr |
⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ( 𝐴 × 𝐵 ) ⊆ ( V × V ) ) → 𝐹 ⊆ ( V × V ) ) |
| 23 |
21 22
|
mpan2 |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → 𝐹 ⊆ ( V × V ) ) |
| 24 |
|
df-rel |
⊢ ( Rel 𝐹 ↔ 𝐹 ⊆ ( V × V ) ) |
| 25 |
23 24
|
sylibr |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → Rel 𝐹 ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ) → Rel 𝐹 ) |
| 27 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃! 𝑦 𝑥 𝐹 𝑦 ) ) |
| 28 |
|
eumo |
⊢ ( ∃! 𝑦 𝑥 𝐹 𝑦 → ∃* 𝑦 𝑥 𝐹 𝑦 ) |
| 29 |
28
|
imim2i |
⊢ ( ( 𝑥 ∈ 𝐴 → ∃! 𝑦 𝑥 𝐹 𝑦 ) → ( 𝑥 ∈ 𝐴 → ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ∃! 𝑦 𝑥 𝐹 𝑦 ) ) → ( 𝑥 ∈ 𝐴 → ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
| 31 |
|
df-br |
⊢ ( 𝑥 𝐹 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) |
| 32 |
|
ssel |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) ) |
| 33 |
31 32
|
biimtrid |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑥 𝐹 𝑦 → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) ) |
| 34 |
|
opelxp1 |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 35 |
33 34
|
syl6 |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑥 𝐹 𝑦 → 𝑥 ∈ 𝐴 ) ) |
| 36 |
35
|
exlimdv |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( ∃ 𝑦 𝑥 𝐹 𝑦 → 𝑥 ∈ 𝐴 ) ) |
| 37 |
36
|
con3d |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( ¬ 𝑥 ∈ 𝐴 → ¬ ∃ 𝑦 𝑥 𝐹 𝑦 ) ) |
| 38 |
|
nexmo |
⊢ ( ¬ ∃ 𝑦 𝑥 𝐹 𝑦 → ∃* 𝑦 𝑥 𝐹 𝑦 ) |
| 39 |
37 38
|
syl6 |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( ¬ 𝑥 ∈ 𝐴 → ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ∃! 𝑦 𝑥 𝐹 𝑦 ) ) → ( ¬ 𝑥 ∈ 𝐴 → ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
| 41 |
30 40
|
pm2.61d |
⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ∃! 𝑦 𝑥 𝐹 𝑦 ) ) → ∃* 𝑦 𝑥 𝐹 𝑦 ) |
| 42 |
41
|
ex |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( ( 𝑥 ∈ 𝐴 → ∃! 𝑦 𝑥 𝐹 𝑦 ) → ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
| 43 |
42
|
alimdv |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃! 𝑦 𝑥 𝐹 𝑦 ) → ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
| 44 |
27 43
|
biimtrid |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 → ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
| 45 |
44
|
imp |
⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ) → ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) |
| 46 |
|
dffun6 |
⊢ ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
| 47 |
26 45 46
|
sylanbrc |
⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ) → Fun 𝐹 ) |
| 48 |
|
dmss |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → dom 𝐹 ⊆ dom ( 𝐴 × 𝐵 ) ) |
| 49 |
|
dmxpss |
⊢ dom ( 𝐴 × 𝐵 ) ⊆ 𝐴 |
| 50 |
48 49
|
sstrdi |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → dom 𝐹 ⊆ 𝐴 ) |
| 51 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝐹 𝑦 ↔ 𝑧 𝐹 𝑦 ) ) |
| 52 |
51
|
eubidv |
⊢ ( 𝑥 = 𝑧 → ( ∃! 𝑦 𝑥 𝐹 𝑦 ↔ ∃! 𝑦 𝑧 𝐹 𝑦 ) ) |
| 53 |
52
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 → ( 𝑧 ∈ 𝐴 → ∃! 𝑦 𝑧 𝐹 𝑦 ) ) |
| 54 |
|
euex |
⊢ ( ∃! 𝑦 𝑧 𝐹 𝑦 → ∃ 𝑦 𝑧 𝐹 𝑦 ) |
| 55 |
|
vex |
⊢ 𝑧 ∈ V |
| 56 |
55
|
eldm |
⊢ ( 𝑧 ∈ dom 𝐹 ↔ ∃ 𝑦 𝑧 𝐹 𝑦 ) |
| 57 |
54 56
|
sylibr |
⊢ ( ∃! 𝑦 𝑧 𝐹 𝑦 → 𝑧 ∈ dom 𝐹 ) |
| 58 |
53 57
|
syl6 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 → ( 𝑧 ∈ 𝐴 → 𝑧 ∈ dom 𝐹 ) ) |
| 59 |
58
|
ssrdv |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 → 𝐴 ⊆ dom 𝐹 ) |
| 60 |
50 59
|
anim12i |
⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ) → ( dom 𝐹 ⊆ 𝐴 ∧ 𝐴 ⊆ dom 𝐹 ) ) |
| 61 |
|
eqss |
⊢ ( dom 𝐹 = 𝐴 ↔ ( dom 𝐹 ⊆ 𝐴 ∧ 𝐴 ⊆ dom 𝐹 ) ) |
| 62 |
60 61
|
sylibr |
⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ) → dom 𝐹 = 𝐴 ) |
| 63 |
|
df-fn |
⊢ ( 𝐹 Fn 𝐴 ↔ ( Fun 𝐹 ∧ dom 𝐹 = 𝐴 ) ) |
| 64 |
47 62 63
|
sylanbrc |
⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ) → 𝐹 Fn 𝐴 ) |
| 65 |
|
rnss |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ran 𝐹 ⊆ ran ( 𝐴 × 𝐵 ) ) |
| 66 |
|
rnxpss |
⊢ ran ( 𝐴 × 𝐵 ) ⊆ 𝐵 |
| 67 |
65 66
|
sstrdi |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ran 𝐹 ⊆ 𝐵 ) |
| 68 |
67
|
adantr |
⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ) → ran 𝐹 ⊆ 𝐵 ) |
| 69 |
|
df-f |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵 ) ) |
| 70 |
64 68 69
|
sylanbrc |
⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 71 |
20 70
|
impbii |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ) ) |