Step |
Hyp |
Ref |
Expression |
1 |
|
dff3 |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ) ) |
2 |
|
df-br |
⊢ ( 𝑥 𝐹 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) |
3 |
|
ssel |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) ) |
4 |
|
opelxp2 |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) → 𝑦 ∈ 𝐵 ) |
5 |
3 4
|
syl6 |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 → 𝑦 ∈ 𝐵 ) ) |
6 |
2 5
|
syl5bi |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑥 𝐹 𝑦 → 𝑦 ∈ 𝐵 ) ) |
7 |
6
|
pm4.71rd |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑥 𝐹 𝑦 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) |
8 |
7
|
eubidv |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( ∃! 𝑦 𝑥 𝐹 𝑦 ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) |
9 |
|
df-reu |
⊢ ( ∃! 𝑦 ∈ 𝐵 𝑥 𝐹 𝑦 ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) |
10 |
8 9
|
bitr4di |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( ∃! 𝑦 𝑥 𝐹 𝑦 ↔ ∃! 𝑦 ∈ 𝐵 𝑥 𝐹 𝑦 ) ) |
11 |
10
|
ralbidv |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝐹 𝑦 ) ) |
12 |
11
|
pm5.32i |
⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ) ↔ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝐹 𝑦 ) ) |
13 |
1 12
|
bitri |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝐹 𝑦 ) ) |