| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
| 2 |
|
vex |
⊢ 𝑡 ∈ V |
| 3 |
|
elfi |
⊢ ( ( 𝑡 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑡 ∈ ( fi ‘ 𝐴 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑡 = ∩ 𝑥 ) ) |
| 4 |
2 3
|
mpan |
⊢ ( 𝐴 ∈ V → ( 𝑡 ∈ ( fi ‘ 𝐴 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑡 = ∩ 𝑥 ) ) |
| 5 |
4
|
biimpd |
⊢ ( 𝐴 ∈ V → ( 𝑡 ∈ ( fi ‘ 𝐴 ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑡 = ∩ 𝑥 ) ) |
| 6 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑡 = ∩ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) ) |
| 7 |
|
fiint |
⊢ ( ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝑧 ) ) |
| 8 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ∈ 𝒫 𝐴 ) |
| 9 |
8
|
elpwid |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ⊆ 𝐴 ) |
| 10 |
9
|
3ad2ant2 |
⊢ ( ( 𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑥 ⊆ 𝐴 ) |
| 11 |
|
simp1 |
⊢ ( ( 𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝐴 ⊆ 𝑧 ) |
| 12 |
10 11
|
sstrd |
⊢ ( ( 𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑥 ⊆ 𝑧 ) |
| 13 |
|
eqvisset |
⊢ ( 𝑡 = ∩ 𝑥 → ∩ 𝑥 ∈ V ) |
| 14 |
|
intex |
⊢ ( 𝑥 ≠ ∅ ↔ ∩ 𝑥 ∈ V ) |
| 15 |
13 14
|
sylibr |
⊢ ( 𝑡 = ∩ 𝑥 → 𝑥 ≠ ∅ ) |
| 16 |
15
|
3ad2ant3 |
⊢ ( ( 𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑥 ≠ ∅ ) |
| 17 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ∈ Fin ) |
| 18 |
17
|
3ad2ant2 |
⊢ ( ( 𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑥 ∈ Fin ) |
| 19 |
12 16 18
|
3jca |
⊢ ( ( 𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → ( 𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) ) |
| 20 |
19
|
3expib |
⊢ ( 𝐴 ⊆ 𝑧 → ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → ( 𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) ) ) |
| 21 |
|
pm2.27 |
⊢ ( ( 𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ( ( ( 𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝑧 ) → ∩ 𝑥 ∈ 𝑧 ) ) |
| 22 |
20 21
|
syl6 |
⊢ ( 𝐴 ⊆ 𝑧 → ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → ( ( ( 𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝑧 ) → ∩ 𝑥 ∈ 𝑧 ) ) ) |
| 23 |
|
eleq1 |
⊢ ( 𝑡 = ∩ 𝑥 → ( 𝑡 ∈ 𝑧 ↔ ∩ 𝑥 ∈ 𝑧 ) ) |
| 24 |
23
|
biimprd |
⊢ ( 𝑡 = ∩ 𝑥 → ( ∩ 𝑥 ∈ 𝑧 → 𝑡 ∈ 𝑧 ) ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → ( ∩ 𝑥 ∈ 𝑧 → 𝑡 ∈ 𝑧 ) ) |
| 26 |
25
|
a1i |
⊢ ( 𝐴 ⊆ 𝑧 → ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → ( ∩ 𝑥 ∈ 𝑧 → 𝑡 ∈ 𝑧 ) ) ) |
| 27 |
22 26
|
syldd |
⊢ ( 𝐴 ⊆ 𝑧 → ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → ( ( ( 𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝑧 ) → 𝑡 ∈ 𝑧 ) ) ) |
| 28 |
27
|
com23 |
⊢ ( 𝐴 ⊆ 𝑧 → ( ( ( 𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝑧 ) → ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑡 ∈ 𝑧 ) ) ) |
| 29 |
28
|
alimdv |
⊢ ( 𝐴 ⊆ 𝑧 → ( ∀ 𝑥 ( ( 𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝑧 ) → ∀ 𝑥 ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑡 ∈ 𝑧 ) ) ) |
| 30 |
7 29
|
biimtrid |
⊢ ( 𝐴 ⊆ 𝑧 → ( ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 → ∀ 𝑥 ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑡 ∈ 𝑧 ) ) ) |
| 31 |
30
|
imp |
⊢ ( ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) → ∀ 𝑥 ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑡 ∈ 𝑧 ) ) |
| 32 |
|
19.23v |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑡 ∈ 𝑧 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑡 ∈ 𝑧 ) ) |
| 33 |
31 32
|
sylib |
⊢ ( ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) → ( ∃ 𝑥 ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑡 = ∩ 𝑥 ) → 𝑡 ∈ 𝑧 ) ) |
| 34 |
6 33
|
biimtrid |
⊢ ( ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) → ( ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑡 = ∩ 𝑥 → 𝑡 ∈ 𝑧 ) ) |
| 35 |
5 34
|
sylan9 |
⊢ ( ( 𝐴 ∈ V ∧ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) ) → ( 𝑡 ∈ ( fi ‘ 𝐴 ) → 𝑡 ∈ 𝑧 ) ) |
| 36 |
35
|
ssrdv |
⊢ ( ( 𝐴 ∈ V ∧ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) ) → ( fi ‘ 𝐴 ) ⊆ 𝑧 ) |
| 37 |
36
|
ex |
⊢ ( 𝐴 ∈ V → ( ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) → ( fi ‘ 𝐴 ) ⊆ 𝑧 ) ) |
| 38 |
37
|
alrimiv |
⊢ ( 𝐴 ∈ V → ∀ 𝑧 ( ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) → ( fi ‘ 𝐴 ) ⊆ 𝑧 ) ) |
| 39 |
|
ssintab |
⊢ ( ( fi ‘ 𝐴 ) ⊆ ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ↔ ∀ 𝑧 ( ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) → ( fi ‘ 𝐴 ) ⊆ 𝑧 ) ) |
| 40 |
38 39
|
sylibr |
⊢ ( 𝐴 ∈ V → ( fi ‘ 𝐴 ) ⊆ ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ) |
| 41 |
|
ssfii |
⊢ ( 𝐴 ∈ V → 𝐴 ⊆ ( fi ‘ 𝐴 ) ) |
| 42 |
|
fiin |
⊢ ( ( 𝑥 ∈ ( fi ‘ 𝐴 ) ∧ 𝑦 ∈ ( fi ‘ 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ) |
| 43 |
42
|
rgen2 |
⊢ ∀ 𝑥 ∈ ( fi ‘ 𝐴 ) ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) |
| 44 |
|
fvex |
⊢ ( fi ‘ 𝐴 ) ∈ V |
| 45 |
|
sseq2 |
⊢ ( 𝑧 = ( fi ‘ 𝐴 ) → ( 𝐴 ⊆ 𝑧 ↔ 𝐴 ⊆ ( fi ‘ 𝐴 ) ) ) |
| 46 |
|
eleq2 |
⊢ ( 𝑧 = ( fi ‘ 𝐴 ) → ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ↔ ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ) ) |
| 47 |
46
|
raleqbi1dv |
⊢ ( 𝑧 = ( fi ‘ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ↔ ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ) ) |
| 48 |
47
|
raleqbi1dv |
⊢ ( 𝑧 = ( fi ‘ 𝐴 ) → ( ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ↔ ∀ 𝑥 ∈ ( fi ‘ 𝐴 ) ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ) ) |
| 49 |
45 48
|
anbi12d |
⊢ ( 𝑧 = ( fi ‘ 𝐴 ) → ( ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) ↔ ( 𝐴 ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ( fi ‘ 𝐴 ) ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ) ) ) |
| 50 |
44 49
|
elab |
⊢ ( ( fi ‘ 𝐴 ) ∈ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ↔ ( 𝐴 ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ( fi ‘ 𝐴 ) ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ) ) |
| 51 |
41 43 50
|
sylanblrc |
⊢ ( 𝐴 ∈ V → ( fi ‘ 𝐴 ) ∈ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ) |
| 52 |
|
intss1 |
⊢ ( ( fi ‘ 𝐴 ) ∈ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } → ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ⊆ ( fi ‘ 𝐴 ) ) |
| 53 |
51 52
|
syl |
⊢ ( 𝐴 ∈ V → ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ⊆ ( fi ‘ 𝐴 ) ) |
| 54 |
40 53
|
eqssd |
⊢ ( 𝐴 ∈ V → ( fi ‘ 𝐴 ) = ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ) |
| 55 |
1 54
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( fi ‘ 𝐴 ) = ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ) |