| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dffi3.1 |
⊢ 𝑅 = ( 𝑢 ∈ V ↦ ran ( 𝑦 ∈ 𝑢 , 𝑧 ∈ 𝑢 ↦ ( 𝑦 ∩ 𝑧 ) ) ) |
| 2 |
|
dffi2 |
⊢ ( 𝐴 ∈ 𝑉 → ( fi ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ ∀ 𝑐 ∈ 𝑥 ∀ 𝑑 ∈ 𝑥 ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ) } ) |
| 3 |
|
fr0g |
⊢ ( 𝐴 ∈ 𝑉 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ∅ ) = 𝐴 ) |
| 4 |
|
frfnom |
⊢ ( rec ( 𝑅 , 𝐴 ) ↾ ω ) Fn ω |
| 5 |
|
peano1 |
⊢ ∅ ∈ ω |
| 6 |
|
fnfvelrn |
⊢ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) Fn ω ∧ ∅ ∈ ω ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ∅ ) ∈ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 7 |
4 5 6
|
mp2an |
⊢ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ∅ ) ∈ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) |
| 8 |
3 7
|
eqeltrrdi |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 9 |
|
elssuni |
⊢ ( 𝐴 ∈ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) → 𝐴 ⊆ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 11 |
|
reeanv |
⊢ ( ∃ 𝑚 ∈ ω ∃ 𝑛 ∈ ω ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ↔ ( ∃ 𝑚 ∈ ω 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ω 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ) |
| 12 |
|
eliun |
⊢ ( 𝑐 ∈ ∪ 𝑚 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ↔ ∃ 𝑚 ∈ ω 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ) |
| 13 |
|
eliun |
⊢ ( 𝑑 ∈ ∪ 𝑛 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↔ ∃ 𝑛 ∈ ω 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) |
| 14 |
12 13
|
anbi12i |
⊢ ( ( 𝑐 ∈ ∪ 𝑚 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ∧ 𝑑 ∈ ∪ 𝑛 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ↔ ( ∃ 𝑚 ∈ ω 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ω 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ) |
| 15 |
|
fniunfv |
⊢ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) Fn ω → ∪ 𝑚 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 16 |
15
|
eleq2d |
⊢ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) Fn ω → ( 𝑐 ∈ ∪ 𝑚 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ↔ 𝑐 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) |
| 17 |
|
fniunfv |
⊢ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) Fn ω → ∪ 𝑛 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 18 |
17
|
eleq2d |
⊢ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) Fn ω → ( 𝑑 ∈ ∪ 𝑛 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↔ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) |
| 19 |
16 18
|
anbi12d |
⊢ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) Fn ω → ( ( 𝑐 ∈ ∪ 𝑚 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ∧ 𝑑 ∈ ∪ 𝑛 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ↔ ( 𝑐 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∧ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) ) |
| 20 |
4 19
|
ax-mp |
⊢ ( ( 𝑐 ∈ ∪ 𝑚 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ∧ 𝑑 ∈ ∪ 𝑛 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ↔ ( 𝑐 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∧ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) |
| 21 |
11 14 20
|
3bitr2i |
⊢ ( ∃ 𝑚 ∈ ω ∃ 𝑛 ∈ ω ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ↔ ( 𝑐 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∧ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) |
| 22 |
|
ordom |
⊢ Ord ω |
| 23 |
|
ordunel |
⊢ ( ( Ord ω ∧ 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ( 𝑚 ∪ 𝑛 ) ∈ ω ) |
| 24 |
22 23
|
mp3an1 |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ( 𝑚 ∪ 𝑛 ) ∈ ω ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → ( 𝑚 ∪ 𝑛 ) ∈ ω ) |
| 26 |
|
simprl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → 𝑚 ∈ ω ) |
| 27 |
25 26
|
jca |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → ( ( 𝑚 ∪ 𝑛 ) ∈ ω ∧ 𝑚 ∈ ω ) ) |
| 28 |
|
nnon |
⊢ ( 𝑦 ∈ ω → 𝑦 ∈ On ) |
| 29 |
|
nnon |
⊢ ( 𝑥 ∈ ω → 𝑥 ∈ On ) |
| 30 |
29
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) ∧ 𝑦 ∈ ω ) → 𝑥 ∈ On ) |
| 31 |
|
onsseleq |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑦 ⊆ 𝑥 ↔ ( 𝑦 ∈ 𝑥 ∨ 𝑦 = 𝑥 ) ) ) |
| 32 |
28 30 31
|
syl2an2 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) ∧ 𝑦 ∈ ω ) → ( 𝑦 ⊆ 𝑥 ↔ ( 𝑦 ∈ 𝑥 ∨ 𝑦 = 𝑥 ) ) ) |
| 33 |
|
rzal |
⊢ ( 𝑥 = ∅ → ∀ 𝑦 ∈ 𝑥 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) |
| 34 |
33
|
biantrud |
⊢ ( 𝑥 = ∅ → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ↔ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ∅ ) ) |
| 36 |
35
|
sseq1d |
⊢ ( 𝑥 = ∅ → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ∅ ) ⊆ ( fi ‘ 𝐴 ) ) ) |
| 37 |
34 36
|
bitr3d |
⊢ ( 𝑥 = ∅ → ( ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ∅ ) ⊆ ( fi ‘ 𝐴 ) ) ) |
| 38 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) |
| 39 |
38
|
sseq1d |
⊢ ( 𝑥 = 𝑛 → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) ) |
| 40 |
38
|
sseq2d |
⊢ ( 𝑥 = 𝑛 → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ) |
| 41 |
40
|
raleqbi1dv |
⊢ ( 𝑥 = 𝑛 → ( ∀ 𝑦 ∈ 𝑥 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ) |
| 42 |
39 41
|
anbi12d |
⊢ ( 𝑥 = 𝑛 → ( ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ↔ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ) ) |
| 43 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑛 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) |
| 44 |
43
|
sseq1d |
⊢ ( 𝑥 = suc 𝑛 → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) ) |
| 45 |
43
|
sseq2d |
⊢ ( 𝑥 = suc 𝑛 → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) |
| 46 |
45
|
raleqbi1dv |
⊢ ( 𝑥 = suc 𝑛 → ( ∀ 𝑦 ∈ 𝑥 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ suc 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) |
| 47 |
44 46
|
anbi12d |
⊢ ( 𝑥 = suc 𝑛 → ( ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ↔ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ suc 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) ) |
| 48 |
|
ssfii |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ ( fi ‘ 𝐴 ) ) |
| 49 |
3 48
|
eqsstrd |
⊢ ( 𝐴 ∈ 𝑉 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ∅ ) ⊆ ( fi ‘ 𝐴 ) ) |
| 50 |
|
id |
⊢ ( 𝑥 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → 𝑥 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) |
| 51 |
|
eqidd |
⊢ ( 𝑥 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → 𝑥 = 𝑥 ) |
| 52 |
|
ineq1 |
⊢ ( 𝑎 = 𝑥 → ( 𝑎 ∩ 𝑏 ) = ( 𝑥 ∩ 𝑏 ) ) |
| 53 |
52
|
eqeq2d |
⊢ ( 𝑎 = 𝑥 → ( 𝑥 = ( 𝑎 ∩ 𝑏 ) ↔ 𝑥 = ( 𝑥 ∩ 𝑏 ) ) ) |
| 54 |
|
ineq2 |
⊢ ( 𝑏 = 𝑥 → ( 𝑥 ∩ 𝑏 ) = ( 𝑥 ∩ 𝑥 ) ) |
| 55 |
|
inidm |
⊢ ( 𝑥 ∩ 𝑥 ) = 𝑥 |
| 56 |
54 55
|
eqtrdi |
⊢ ( 𝑏 = 𝑥 → ( 𝑥 ∩ 𝑏 ) = 𝑥 ) |
| 57 |
56
|
eqeq2d |
⊢ ( 𝑏 = 𝑥 → ( 𝑥 = ( 𝑥 ∩ 𝑏 ) ↔ 𝑥 = 𝑥 ) ) |
| 58 |
53 57
|
rspc2ev |
⊢ ( ( 𝑥 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∧ 𝑥 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∧ 𝑥 = 𝑥 ) → ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) 𝑥 = ( 𝑎 ∩ 𝑏 ) ) |
| 59 |
50 50 51 58
|
syl3anc |
⊢ ( 𝑥 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) 𝑥 = ( 𝑎 ∩ 𝑏 ) ) |
| 60 |
|
eqid |
⊢ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) = ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) |
| 61 |
60
|
rnmpo |
⊢ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) = { 𝑥 ∣ ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) 𝑥 = ( 𝑎 ∩ 𝑏 ) } |
| 62 |
61
|
eqabri |
⊢ ( 𝑥 ∈ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ↔ ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) 𝑥 = ( 𝑎 ∩ 𝑏 ) ) |
| 63 |
59 62
|
sylibr |
⊢ ( 𝑥 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → 𝑥 ∈ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 64 |
63
|
ssriv |
⊢ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) |
| 65 |
|
simpl |
⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → 𝑛 ∈ ω ) |
| 66 |
|
fvex |
⊢ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∈ V |
| 67 |
66
|
uniex |
⊢ ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∈ V |
| 68 |
67
|
pwex |
⊢ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∈ V |
| 69 |
|
inss1 |
⊢ ( 𝑎 ∩ 𝑏 ) ⊆ 𝑎 |
| 70 |
|
elssuni |
⊢ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → 𝑎 ⊆ ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∧ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) → 𝑎 ⊆ ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) |
| 72 |
69 71
|
sstrid |
⊢ ( ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∧ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) → ( 𝑎 ∩ 𝑏 ) ⊆ ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) |
| 73 |
|
vex |
⊢ 𝑎 ∈ V |
| 74 |
73
|
inex1 |
⊢ ( 𝑎 ∩ 𝑏 ) ∈ V |
| 75 |
74
|
elpw |
⊢ ( ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↔ ( 𝑎 ∩ 𝑏 ) ⊆ ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) |
| 76 |
72 75
|
sylibr |
⊢ ( ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∧ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) → ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) |
| 77 |
76
|
rgen2 |
⊢ ∀ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∀ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) |
| 78 |
60
|
fmpo |
⊢ ( ∀ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∀ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↔ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) : ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) × ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ⟶ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) |
| 79 |
77 78
|
mpbi |
⊢ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) : ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) × ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ⟶ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) |
| 80 |
|
frn |
⊢ ( ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) : ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) × ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ⟶ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ⊆ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) |
| 81 |
79 80
|
ax-mp |
⊢ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ⊆ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) |
| 82 |
68 81
|
ssexi |
⊢ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ∈ V |
| 83 |
|
nfcv |
⊢ Ⅎ 𝑣 𝐴 |
| 84 |
|
nfcv |
⊢ Ⅎ 𝑣 𝑛 |
| 85 |
|
nfcv |
⊢ Ⅎ 𝑣 ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) |
| 86 |
|
mpoeq12 |
⊢ ( ( 𝑢 = 𝑣 ∧ 𝑢 = 𝑣 ) → ( 𝑦 ∈ 𝑢 , 𝑧 ∈ 𝑢 ↦ ( 𝑦 ∩ 𝑧 ) ) = ( 𝑦 ∈ 𝑣 , 𝑧 ∈ 𝑣 ↦ ( 𝑦 ∩ 𝑧 ) ) ) |
| 87 |
86
|
anidms |
⊢ ( 𝑢 = 𝑣 → ( 𝑦 ∈ 𝑢 , 𝑧 ∈ 𝑢 ↦ ( 𝑦 ∩ 𝑧 ) ) = ( 𝑦 ∈ 𝑣 , 𝑧 ∈ 𝑣 ↦ ( 𝑦 ∩ 𝑧 ) ) ) |
| 88 |
|
ineq1 |
⊢ ( 𝑦 = 𝑎 → ( 𝑦 ∩ 𝑧 ) = ( 𝑎 ∩ 𝑧 ) ) |
| 89 |
|
ineq2 |
⊢ ( 𝑧 = 𝑏 → ( 𝑎 ∩ 𝑧 ) = ( 𝑎 ∩ 𝑏 ) ) |
| 90 |
88 89
|
cbvmpov |
⊢ ( 𝑦 ∈ 𝑣 , 𝑧 ∈ 𝑣 ↦ ( 𝑦 ∩ 𝑧 ) ) = ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) |
| 91 |
87 90
|
eqtrdi |
⊢ ( 𝑢 = 𝑣 → ( 𝑦 ∈ 𝑢 , 𝑧 ∈ 𝑢 ↦ ( 𝑦 ∩ 𝑧 ) ) = ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 92 |
91
|
rneqd |
⊢ ( 𝑢 = 𝑣 → ran ( 𝑦 ∈ 𝑢 , 𝑧 ∈ 𝑢 ↦ ( 𝑦 ∩ 𝑧 ) ) = ran ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 93 |
92
|
cbvmptv |
⊢ ( 𝑢 ∈ V ↦ ran ( 𝑦 ∈ 𝑢 , 𝑧 ∈ 𝑢 ↦ ( 𝑦 ∩ 𝑧 ) ) ) = ( 𝑣 ∈ V ↦ ran ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 94 |
1 93
|
eqtri |
⊢ 𝑅 = ( 𝑣 ∈ V ↦ ran ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 95 |
|
rdgeq1 |
⊢ ( 𝑅 = ( 𝑣 ∈ V ↦ ran ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) ) → rec ( 𝑅 , 𝐴 ) = rec ( ( 𝑣 ∈ V ↦ ran ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) ) , 𝐴 ) ) |
| 96 |
94 95
|
ax-mp |
⊢ rec ( 𝑅 , 𝐴 ) = rec ( ( 𝑣 ∈ V ↦ ran ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) ) , 𝐴 ) |
| 97 |
96
|
reseq1i |
⊢ ( rec ( 𝑅 , 𝐴 ) ↾ ω ) = ( rec ( ( 𝑣 ∈ V ↦ ran ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) ) , 𝐴 ) ↾ ω ) |
| 98 |
|
mpoeq12 |
⊢ ( ( 𝑣 = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∧ 𝑣 = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) → ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) = ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 99 |
98
|
anidms |
⊢ ( 𝑣 = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) = ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 100 |
99
|
rneqd |
⊢ ( 𝑣 = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → ran ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) = ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 101 |
83 84 85 97 100
|
frsucmpt |
⊢ ( ( 𝑛 ∈ ω ∧ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ∈ V ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) = ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 102 |
65 82 101
|
sylancl |
⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) = ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 103 |
64 102
|
sseqtrrid |
⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) |
| 104 |
|
sstr2 |
⊢ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) |
| 105 |
103 104
|
syl5com |
⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) |
| 106 |
105
|
ralimdv |
⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) |
| 107 |
|
vex |
⊢ 𝑛 ∈ V |
| 108 |
|
fveq2 |
⊢ ( 𝑦 = 𝑛 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) |
| 109 |
108
|
sseq1d |
⊢ ( 𝑦 = 𝑛 → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) |
| 110 |
107 109
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { 𝑛 } ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) |
| 111 |
103 110
|
sylibr |
⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → ∀ 𝑦 ∈ { 𝑛 } ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) |
| 112 |
106 111
|
jctird |
⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → ( ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ∧ ∀ 𝑦 ∈ { 𝑛 } ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) ) |
| 113 |
|
df-suc |
⊢ suc 𝑛 = ( 𝑛 ∪ { 𝑛 } ) |
| 114 |
113
|
raleqi |
⊢ ( ∀ 𝑦 ∈ suc 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ↔ ∀ 𝑦 ∈ ( 𝑛 ∪ { 𝑛 } ) ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) |
| 115 |
|
ralunb |
⊢ ( ∀ 𝑦 ∈ ( 𝑛 ∪ { 𝑛 } ) ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ↔ ( ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ∧ ∀ 𝑦 ∈ { 𝑛 } ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) |
| 116 |
114 115
|
bitri |
⊢ ( ∀ 𝑦 ∈ suc 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ↔ ( ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ∧ ∀ 𝑦 ∈ { 𝑛 } ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) |
| 117 |
112 116
|
imbitrrdi |
⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → ∀ 𝑦 ∈ suc 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) |
| 118 |
|
fiin |
⊢ ( ( 𝑎 ∈ ( fi ‘ 𝐴 ) ∧ 𝑏 ∈ ( fi ‘ 𝐴 ) ) → ( 𝑎 ∩ 𝑏 ) ∈ ( fi ‘ 𝐴 ) ) |
| 119 |
118
|
rgen2 |
⊢ ∀ 𝑎 ∈ ( fi ‘ 𝐴 ) ∀ 𝑏 ∈ ( fi ‘ 𝐴 ) ( 𝑎 ∩ 𝑏 ) ∈ ( fi ‘ 𝐴 ) |
| 120 |
|
ss2ralv |
⊢ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) → ( ∀ 𝑎 ∈ ( fi ‘ 𝐴 ) ∀ 𝑏 ∈ ( fi ‘ 𝐴 ) ( 𝑎 ∩ 𝑏 ) ∈ ( fi ‘ 𝐴 ) → ∀ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∀ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ( 𝑎 ∩ 𝑏 ) ∈ ( fi ‘ 𝐴 ) ) ) |
| 121 |
119 120
|
mpi |
⊢ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) → ∀ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∀ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ( 𝑎 ∩ 𝑏 ) ∈ ( fi ‘ 𝐴 ) ) |
| 122 |
60
|
fmpo |
⊢ ( ∀ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ∀ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ( 𝑎 ∩ 𝑏 ) ∈ ( fi ‘ 𝐴 ) ↔ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) : ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) × ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ⟶ ( fi ‘ 𝐴 ) ) |
| 123 |
121 122
|
sylib |
⊢ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) → ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) : ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) × ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ⟶ ( fi ‘ 𝐴 ) ) |
| 124 |
123
|
frnd |
⊢ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) → ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ⊆ ( fi ‘ 𝐴 ) ) |
| 125 |
124
|
adantl |
⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ↦ ( 𝑎 ∩ 𝑏 ) ) ⊆ ( fi ‘ 𝐴 ) ) |
| 126 |
102 125
|
eqsstrd |
⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) |
| 127 |
117 126
|
jctild |
⊢ ( ( 𝑛 ∈ ω ∧ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ suc 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) ) |
| 128 |
127
|
expimpd |
⊢ ( 𝑛 ∈ ω → ( ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ suc 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) ) |
| 129 |
128
|
a1d |
⊢ ( 𝑛 ∈ ω → ( 𝐴 ∈ 𝑉 → ( ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ suc 𝑛 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc 𝑛 ) ) ) ) ) |
| 130 |
37 42 47 49 129
|
finds2 |
⊢ ( 𝑥 ∈ ω → ( 𝐴 ∈ 𝑉 → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) ) |
| 131 |
130
|
impcom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) |
| 132 |
131
|
simprd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) → ∀ 𝑦 ∈ 𝑥 ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) |
| 133 |
132
|
r19.21bi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) ∧ 𝑦 ∈ 𝑥 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) |
| 134 |
133
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) → ( 𝑦 ∈ 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) |
| 135 |
134
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) ∧ 𝑦 ∈ ω ) → ( 𝑦 ∈ 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) |
| 136 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) |
| 137 |
|
eqimss |
⊢ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) |
| 138 |
136 137
|
syl |
⊢ ( 𝑦 = 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) |
| 139 |
138
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) ∧ 𝑦 ∈ ω ) → ( 𝑦 = 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) |
| 140 |
135 139
|
jaod |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) ∧ 𝑦 ∈ ω ) → ( ( 𝑦 ∈ 𝑥 ∨ 𝑦 = 𝑥 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) |
| 141 |
32 140
|
sylbid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) ∧ 𝑦 ∈ ω ) → ( 𝑦 ⊆ 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) |
| 142 |
141
|
ralrimiva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) → ∀ 𝑦 ∈ ω ( 𝑦 ⊆ 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) |
| 143 |
142
|
ralrimiva |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ ω ∀ 𝑦 ∈ ω ( 𝑦 ⊆ 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) |
| 144 |
143
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → ∀ 𝑥 ∈ ω ∀ 𝑦 ∈ ω ( 𝑦 ⊆ 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ) |
| 145 |
|
ssun1 |
⊢ 𝑚 ⊆ ( 𝑚 ∪ 𝑛 ) |
| 146 |
145
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → 𝑚 ⊆ ( 𝑚 ∪ 𝑛 ) ) |
| 147 |
|
sseq2 |
⊢ ( 𝑥 = ( 𝑚 ∪ 𝑛 ) → ( 𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ ( 𝑚 ∪ 𝑛 ) ) ) |
| 148 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑚 ∪ 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 149 |
148
|
sseq2d |
⊢ ( 𝑥 = ( 𝑚 ∪ 𝑛 ) → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) |
| 150 |
147 149
|
imbi12d |
⊢ ( 𝑥 = ( 𝑚 ∪ 𝑛 ) → ( ( 𝑦 ⊆ 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) ↔ ( 𝑦 ⊆ ( 𝑚 ∪ 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) ) |
| 151 |
|
sseq1 |
⊢ ( 𝑦 = 𝑚 → ( 𝑦 ⊆ ( 𝑚 ∪ 𝑛 ) ↔ 𝑚 ⊆ ( 𝑚 ∪ 𝑛 ) ) ) |
| 152 |
|
fveq2 |
⊢ ( 𝑦 = 𝑚 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ) |
| 153 |
152
|
sseq1d |
⊢ ( 𝑦 = 𝑚 → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) |
| 154 |
151 153
|
imbi12d |
⊢ ( 𝑦 = 𝑚 → ( ( 𝑦 ⊆ ( 𝑚 ∪ 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ↔ ( 𝑚 ⊆ ( 𝑚 ∪ 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) ) |
| 155 |
150 154
|
rspc2v |
⊢ ( ( ( 𝑚 ∪ 𝑛 ) ∈ ω ∧ 𝑚 ∈ ω ) → ( ∀ 𝑥 ∈ ω ∀ 𝑦 ∈ ω ( 𝑦 ⊆ 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) → ( 𝑚 ⊆ ( 𝑚 ∪ 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) ) |
| 156 |
27 144 146 155
|
syl3c |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 157 |
156
|
sseld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) → 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) |
| 158 |
|
simprr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → 𝑛 ∈ ω ) |
| 159 |
25 158
|
jca |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → ( ( 𝑚 ∪ 𝑛 ) ∈ ω ∧ 𝑛 ∈ ω ) ) |
| 160 |
|
ssun2 |
⊢ 𝑛 ⊆ ( 𝑚 ∪ 𝑛 ) |
| 161 |
160
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → 𝑛 ⊆ ( 𝑚 ∪ 𝑛 ) ) |
| 162 |
|
sseq1 |
⊢ ( 𝑦 = 𝑛 → ( 𝑦 ⊆ ( 𝑚 ∪ 𝑛 ) ↔ 𝑛 ⊆ ( 𝑚 ∪ 𝑛 ) ) ) |
| 163 |
108
|
sseq1d |
⊢ ( 𝑦 = 𝑛 → ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) |
| 164 |
162 163
|
imbi12d |
⊢ ( 𝑦 = 𝑛 → ( ( 𝑦 ⊆ ( 𝑚 ∪ 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ↔ ( 𝑛 ⊆ ( 𝑚 ∪ 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) ) |
| 165 |
150 164
|
rspc2v |
⊢ ( ( ( 𝑚 ∪ 𝑛 ) ∈ ω ∧ 𝑛 ∈ ω ) → ( ∀ 𝑥 ∈ ω ∀ 𝑦 ∈ ω ( 𝑦 ⊆ 𝑥 → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑦 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) → ( 𝑛 ⊆ ( 𝑚 ∪ 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) ) |
| 166 |
159 144 161 165
|
syl3c |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ⊆ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 167 |
166
|
sseld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → ( 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) → 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) |
| 168 |
24
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → ( 𝑚 ∪ 𝑛 ) ∈ ω ) |
| 169 |
|
peano2 |
⊢ ( ( 𝑚 ∪ 𝑛 ) ∈ ω → suc ( 𝑚 ∪ 𝑛 ) ∈ ω ) |
| 170 |
|
fveq2 |
⊢ ( 𝑥 = suc ( 𝑚 ∪ 𝑛 ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc ( 𝑚 ∪ 𝑛 ) ) ) |
| 171 |
170
|
ssiun2s |
⊢ ( suc ( 𝑚 ∪ 𝑛 ) ∈ ω → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc ( 𝑚 ∪ 𝑛 ) ) ⊆ ∪ 𝑥 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) |
| 172 |
168 169 171
|
3syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc ( 𝑚 ∪ 𝑛 ) ) ⊆ ∪ 𝑥 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) |
| 173 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 174 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 175 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → ( 𝑐 ∩ 𝑑 ) = ( 𝑐 ∩ 𝑑 ) ) |
| 176 |
|
ineq1 |
⊢ ( 𝑎 = 𝑐 → ( 𝑎 ∩ 𝑏 ) = ( 𝑐 ∩ 𝑏 ) ) |
| 177 |
176
|
eqeq2d |
⊢ ( 𝑎 = 𝑐 → ( ( 𝑐 ∩ 𝑑 ) = ( 𝑎 ∩ 𝑏 ) ↔ ( 𝑐 ∩ 𝑑 ) = ( 𝑐 ∩ 𝑏 ) ) ) |
| 178 |
|
ineq2 |
⊢ ( 𝑏 = 𝑑 → ( 𝑐 ∩ 𝑏 ) = ( 𝑐 ∩ 𝑑 ) ) |
| 179 |
178
|
eqeq2d |
⊢ ( 𝑏 = 𝑑 → ( ( 𝑐 ∩ 𝑑 ) = ( 𝑐 ∩ 𝑏 ) ↔ ( 𝑐 ∩ 𝑑 ) = ( 𝑐 ∩ 𝑑 ) ) ) |
| 180 |
177 179
|
rspc2ev |
⊢ ( ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ ( 𝑐 ∩ 𝑑 ) = ( 𝑐 ∩ 𝑑 ) ) → ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ( 𝑐 ∩ 𝑑 ) = ( 𝑎 ∩ 𝑏 ) ) |
| 181 |
173 174 175 180
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ( 𝑐 ∩ 𝑑 ) = ( 𝑎 ∩ 𝑏 ) ) |
| 182 |
|
vex |
⊢ 𝑐 ∈ V |
| 183 |
182
|
inex1 |
⊢ ( 𝑐 ∩ 𝑑 ) ∈ V |
| 184 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑐 ∩ 𝑑 ) → ( 𝑥 = ( 𝑎 ∩ 𝑏 ) ↔ ( 𝑐 ∩ 𝑑 ) = ( 𝑎 ∩ 𝑏 ) ) ) |
| 185 |
184
|
2rexbidv |
⊢ ( 𝑥 = ( 𝑐 ∩ 𝑑 ) → ( ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) 𝑥 = ( 𝑎 ∩ 𝑏 ) ↔ ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ( 𝑐 ∩ 𝑑 ) = ( 𝑎 ∩ 𝑏 ) ) ) |
| 186 |
183 185
|
elab |
⊢ ( ( 𝑐 ∩ 𝑑 ) ∈ { 𝑥 ∣ ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) 𝑥 = ( 𝑎 ∩ 𝑏 ) } ↔ ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ( 𝑐 ∩ 𝑑 ) = ( 𝑎 ∩ 𝑏 ) ) |
| 187 |
181 186
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → ( 𝑐 ∩ 𝑑 ) ∈ { 𝑥 ∣ ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) 𝑥 = ( 𝑎 ∩ 𝑏 ) } ) |
| 188 |
|
eqid |
⊢ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) = ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) |
| 189 |
188
|
rnmpo |
⊢ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) = { 𝑥 ∣ ∃ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∃ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) 𝑥 = ( 𝑎 ∩ 𝑏 ) } |
| 190 |
187 189
|
eleqtrrdi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → ( 𝑐 ∩ 𝑑 ) ∈ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 191 |
|
fvex |
⊢ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∈ V |
| 192 |
191
|
uniex |
⊢ ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∈ V |
| 193 |
192
|
pwex |
⊢ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∈ V |
| 194 |
|
elssuni |
⊢ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) → 𝑎 ⊆ ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 195 |
69 194
|
sstrid |
⊢ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) → ( 𝑎 ∩ 𝑏 ) ⊆ ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 196 |
74
|
elpw |
⊢ ( ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↔ ( 𝑎 ∩ 𝑏 ) ⊆ ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 197 |
195 196
|
sylibr |
⊢ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) → ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 198 |
197
|
adantr |
⊢ ( ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) → ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 199 |
198
|
rgen2 |
⊢ ∀ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∀ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) |
| 200 |
188
|
fmpo |
⊢ ( ∀ 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∀ 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↔ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) : ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) × ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ⟶ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 201 |
199 200
|
mpbi |
⊢ ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) : ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) × ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ⟶ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) |
| 202 |
|
frn |
⊢ ( ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) : ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) × ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ⟶ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) → ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) ⊆ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 203 |
201 202
|
ax-mp |
⊢ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) ⊆ 𝒫 ∪ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) |
| 204 |
193 203
|
ssexi |
⊢ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) ∈ V |
| 205 |
|
nfcv |
⊢ Ⅎ 𝑣 ( 𝑚 ∪ 𝑛 ) |
| 206 |
|
nfcv |
⊢ Ⅎ 𝑣 ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) |
| 207 |
|
mpoeq12 |
⊢ ( ( 𝑣 = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑣 = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) → ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) = ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 208 |
207
|
anidms |
⊢ ( 𝑣 = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) → ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) = ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 209 |
208
|
rneqd |
⊢ ( 𝑣 = ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) → ran ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ ( 𝑎 ∩ 𝑏 ) ) = ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 210 |
83 205 206 97 209
|
frsucmpt |
⊢ ( ( ( 𝑚 ∪ 𝑛 ) ∈ ω ∧ ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) ∈ V ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc ( 𝑚 ∪ 𝑛 ) ) = ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 211 |
168 204 210
|
sylancl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc ( 𝑚 ∪ 𝑛 ) ) = ran ( 𝑎 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) , 𝑏 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ ( 𝑎 ∩ 𝑏 ) ) ) |
| 212 |
190 211
|
eleqtrrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → ( 𝑐 ∩ 𝑑 ) ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ suc ( 𝑚 ∪ 𝑛 ) ) ) |
| 213 |
172 212
|
sseldd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → ( 𝑐 ∩ 𝑑 ) ∈ ∪ 𝑥 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ) |
| 214 |
|
fniunfv |
⊢ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) Fn ω → ∪ 𝑥 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 215 |
4 214
|
ax-mp |
⊢ ∪ 𝑥 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) |
| 216 |
213 215
|
eleqtrdi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) ∧ ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) → ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 217 |
216
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → ( ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ ( 𝑚 ∪ 𝑛 ) ) ) → ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) |
| 218 |
157 167 217
|
syl2and |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ) → ( ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) → ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) |
| 219 |
218
|
rexlimdvva |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑚 ∈ ω ∃ 𝑛 ∈ ω ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) → ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) |
| 220 |
219
|
imp |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑚 ∈ ω ∃ 𝑛 ∈ ω ( 𝑐 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑚 ) ∧ 𝑑 ∈ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑛 ) ) ) → ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 221 |
21 220
|
sylan2br |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∧ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) → ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 222 |
221
|
ralrimivva |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑐 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∀ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 223 |
131
|
simpld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ) |
| 224 |
|
fvex |
⊢ ( fi ‘ 𝐴 ) ∈ V |
| 225 |
224
|
elpw2 |
⊢ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ∈ 𝒫 ( fi ‘ 𝐴 ) ↔ ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ⊆ ( fi ‘ 𝐴 ) ) |
| 226 |
223 225
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ∈ 𝒫 ( fi ‘ 𝐴 ) ) |
| 227 |
226
|
ralrimiva |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ∈ 𝒫 ( fi ‘ 𝐴 ) ) |
| 228 |
|
fnfvrnss |
⊢ ( ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) Fn ω ∧ ∀ 𝑥 ∈ ω ( ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ‘ 𝑥 ) ∈ 𝒫 ( fi ‘ 𝐴 ) ) → ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ⊆ 𝒫 ( fi ‘ 𝐴 ) ) |
| 229 |
4 227 228
|
sylancr |
⊢ ( 𝐴 ∈ 𝑉 → ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ⊆ 𝒫 ( fi ‘ 𝐴 ) ) |
| 230 |
|
sspwuni |
⊢ ( ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ⊆ 𝒫 ( fi ‘ 𝐴 ) ↔ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ⊆ ( fi ‘ 𝐴 ) ) |
| 231 |
229 230
|
sylib |
⊢ ( 𝐴 ∈ 𝑉 → ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ⊆ ( fi ‘ 𝐴 ) ) |
| 232 |
|
ssexg |
⊢ ( ( ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ⊆ ( fi ‘ 𝐴 ) ∧ ( fi ‘ 𝐴 ) ∈ V ) → ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∈ V ) |
| 233 |
231 224 232
|
sylancl |
⊢ ( 𝐴 ∈ 𝑉 → ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∈ V ) |
| 234 |
|
sseq2 |
⊢ ( 𝑥 = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) |
| 235 |
|
eleq2 |
⊢ ( 𝑥 = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) → ( ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ↔ ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) |
| 236 |
235
|
raleqbi1dv |
⊢ ( 𝑥 = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) → ( ∀ 𝑑 ∈ 𝑥 ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ↔ ∀ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) |
| 237 |
236
|
raleqbi1dv |
⊢ ( 𝑥 = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) → ( ∀ 𝑐 ∈ 𝑥 ∀ 𝑑 ∈ 𝑥 ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ↔ ∀ 𝑐 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∀ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) |
| 238 |
234 237
|
anbi12d |
⊢ ( 𝑥 = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) → ( ( 𝐴 ⊆ 𝑥 ∧ ∀ 𝑐 ∈ 𝑥 ∀ 𝑑 ∈ 𝑥 ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ) ↔ ( 𝐴 ⊆ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∧ ∀ 𝑐 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∀ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) ) |
| 239 |
238
|
elabg |
⊢ ( ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∈ V → ( ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∈ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ ∀ 𝑐 ∈ 𝑥 ∀ 𝑑 ∈ 𝑥 ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ) } ↔ ( 𝐴 ⊆ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∧ ∀ 𝑐 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∀ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) ) |
| 240 |
233 239
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∈ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ ∀ 𝑐 ∈ 𝑥 ∀ 𝑑 ∈ 𝑥 ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ) } ↔ ( 𝐴 ⊆ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∧ ∀ 𝑐 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∀ 𝑑 ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ( 𝑐 ∩ 𝑑 ) ∈ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) ) ) |
| 241 |
10 222 240
|
mpbir2and |
⊢ ( 𝐴 ∈ 𝑉 → ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∈ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ ∀ 𝑐 ∈ 𝑥 ∀ 𝑑 ∈ 𝑥 ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ) } ) |
| 242 |
|
intss1 |
⊢ ( ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ∈ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ ∀ 𝑐 ∈ 𝑥 ∀ 𝑑 ∈ 𝑥 ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ) } → ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ ∀ 𝑐 ∈ 𝑥 ∀ 𝑑 ∈ 𝑥 ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ) } ⊆ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 243 |
241 242
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ ∀ 𝑐 ∈ 𝑥 ∀ 𝑑 ∈ 𝑥 ( 𝑐 ∩ 𝑑 ) ∈ 𝑥 ) } ⊆ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 244 |
2 243
|
eqsstrd |
⊢ ( 𝐴 ∈ 𝑉 → ( fi ‘ 𝐴 ) ⊆ ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 245 |
244 231
|
eqssd |
⊢ ( 𝐴 ∈ 𝑉 → ( fi ‘ 𝐴 ) = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) ) |
| 246 |
|
df-ima |
⊢ ( rec ( 𝑅 , 𝐴 ) “ ω ) = ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) |
| 247 |
246
|
unieqi |
⊢ ∪ ( rec ( 𝑅 , 𝐴 ) “ ω ) = ∪ ran ( rec ( 𝑅 , 𝐴 ) ↾ ω ) |
| 248 |
245 247
|
eqtr4di |
⊢ ( 𝐴 ∈ 𝑉 → ( fi ‘ 𝐴 ) = ∪ ( rec ( 𝑅 , 𝐴 ) “ ω ) ) |