Metamath Proof Explorer


Theorem dffin7-2

Description: Class form of isfin7-2 . (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion dffin7-2 FinVII = ( Fin ∪ ( V ∖ dom card ) )

Proof

Step Hyp Ref Expression
1 imor ( ( 𝑥 ∈ dom card → 𝑥 ∈ Fin ) ↔ ( ¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin ) )
2 isfin7-2 ( 𝑥 ∈ V → ( 𝑥 ∈ FinVII ↔ ( 𝑥 ∈ dom card → 𝑥 ∈ Fin ) ) )
3 2 elv ( 𝑥 ∈ FinVII ↔ ( 𝑥 ∈ dom card → 𝑥 ∈ Fin ) )
4 elun ( 𝑥 ∈ ( Fin ∪ ( V ∖ dom card ) ) ↔ ( 𝑥 ∈ Fin ∨ 𝑥 ∈ ( V ∖ dom card ) ) )
5 orcom ( ( 𝑥 ∈ Fin ∨ 𝑥 ∈ ( V ∖ dom card ) ) ↔ ( 𝑥 ∈ ( V ∖ dom card ) ∨ 𝑥 ∈ Fin ) )
6 vex 𝑥 ∈ V
7 eldif ( 𝑥 ∈ ( V ∖ dom card ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ dom card ) )
8 6 7 mpbiran ( 𝑥 ∈ ( V ∖ dom card ) ↔ ¬ 𝑥 ∈ dom card )
9 8 orbi1i ( ( 𝑥 ∈ ( V ∖ dom card ) ∨ 𝑥 ∈ Fin ) ↔ ( ¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin ) )
10 4 5 9 3bitri ( 𝑥 ∈ ( Fin ∪ ( V ∖ dom card ) ) ↔ ( ¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin ) )
11 1 3 10 3bitr4i ( 𝑥 ∈ FinVII𝑥 ∈ ( Fin ∪ ( V ∖ dom card ) ) )
12 11 eqriv FinVII = ( Fin ∪ ( V ∖ dom card ) )