Step |
Hyp |
Ref |
Expression |
1 |
|
imor |
⊢ ( ( 𝑥 ∈ dom card → 𝑥 ∈ Fin ) ↔ ( ¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin ) ) |
2 |
|
isfin7-2 |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ FinVII ↔ ( 𝑥 ∈ dom card → 𝑥 ∈ Fin ) ) ) |
3 |
2
|
elv |
⊢ ( 𝑥 ∈ FinVII ↔ ( 𝑥 ∈ dom card → 𝑥 ∈ Fin ) ) |
4 |
|
elun |
⊢ ( 𝑥 ∈ ( Fin ∪ ( V ∖ dom card ) ) ↔ ( 𝑥 ∈ Fin ∨ 𝑥 ∈ ( V ∖ dom card ) ) ) |
5 |
|
orcom |
⊢ ( ( 𝑥 ∈ Fin ∨ 𝑥 ∈ ( V ∖ dom card ) ) ↔ ( 𝑥 ∈ ( V ∖ dom card ) ∨ 𝑥 ∈ Fin ) ) |
6 |
|
vex |
⊢ 𝑥 ∈ V |
7 |
|
eldif |
⊢ ( 𝑥 ∈ ( V ∖ dom card ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ dom card ) ) |
8 |
6 7
|
mpbiran |
⊢ ( 𝑥 ∈ ( V ∖ dom card ) ↔ ¬ 𝑥 ∈ dom card ) |
9 |
8
|
orbi1i |
⊢ ( ( 𝑥 ∈ ( V ∖ dom card ) ∨ 𝑥 ∈ Fin ) ↔ ( ¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin ) ) |
10 |
4 5 9
|
3bitri |
⊢ ( 𝑥 ∈ ( Fin ∪ ( V ∖ dom card ) ) ↔ ( ¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin ) ) |
11 |
1 3 10
|
3bitr4i |
⊢ ( 𝑥 ∈ FinVII ↔ 𝑥 ∈ ( Fin ∪ ( V ∖ dom card ) ) ) |
12 |
11
|
eqriv |
⊢ FinVII = ( Fin ∪ ( V ∖ dom card ) ) |