Metamath Proof Explorer


Theorem dffo2

Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006)

Ref Expression
Assertion dffo2 ( 𝐹 : 𝐴onto𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ ran 𝐹 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 fof ( 𝐹 : 𝐴onto𝐵𝐹 : 𝐴𝐵 )
2 forn ( 𝐹 : 𝐴onto𝐵 → ran 𝐹 = 𝐵 )
3 1 2 jca ( 𝐹 : 𝐴onto𝐵 → ( 𝐹 : 𝐴𝐵 ∧ ran 𝐹 = 𝐵 ) )
4 ffn ( 𝐹 : 𝐴𝐵𝐹 Fn 𝐴 )
5 df-fo ( 𝐹 : 𝐴onto𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ) )
6 5 biimpri ( ( 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ) → 𝐹 : 𝐴onto𝐵 )
7 4 6 sylan ( ( 𝐹 : 𝐴𝐵 ∧ ran 𝐹 = 𝐵 ) → 𝐹 : 𝐴onto𝐵 )
8 3 7 impbii ( 𝐹 : 𝐴onto𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ ran 𝐹 = 𝐵 ) )