| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dffo2 |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ran 𝐹 = 𝐵 ) ) |
| 2 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
| 3 |
|
fnrnfv |
⊢ ( 𝐹 Fn 𝐴 → ran 𝐹 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } ) |
| 4 |
3
|
eqeq1d |
⊢ ( 𝐹 Fn 𝐴 → ( ran 𝐹 = 𝐵 ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } = 𝐵 ) ) |
| 5 |
2 4
|
syl |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ran 𝐹 = 𝐵 ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } = 𝐵 ) ) |
| 6 |
|
dfbi2 |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ 𝐵 ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 7 |
|
simpr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
| 8 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 9 |
8
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 10 |
7 9
|
eqeltrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝑦 ∈ 𝐵 ) |
| 11 |
10
|
rexlimdva2 |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) |
| 12 |
11
|
biantrurd |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 13 |
6 12
|
bitr4id |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 14 |
13
|
albidv |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 15 |
|
eqabcb |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } = 𝐵 ↔ ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ 𝐵 ) ) |
| 16 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 17 |
14 15 16
|
3bitr4g |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } = 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 18 |
5 17
|
bitrd |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ran 𝐹 = 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 19 |
18
|
pm5.32i |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ran 𝐹 = 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 20 |
1 19
|
bitri |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |