| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dffo3f.1 | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 2 |  | dffo2 | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ran  𝐹  =  𝐵 ) ) | 
						
							| 3 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  Fn  𝐴 ) | 
						
							| 4 |  | fnrnfv | ⊢ ( 𝐹  Fn  𝐴  →  ran  𝐹  =  { 𝑦  ∣  ∃ 𝑤  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑤 ) } ) | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑥 𝑤 | 
						
							| 6 | 1 5 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑤 ) | 
						
							| 7 | 6 | nfeq2 | ⊢ Ⅎ 𝑥 𝑦  =  ( 𝐹 ‘ 𝑤 ) | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑤 𝑦  =  ( 𝐹 ‘ 𝑥 ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 10 | 9 | eqeq2d | ⊢ ( 𝑤  =  𝑥  →  ( 𝑦  =  ( 𝐹 ‘ 𝑤 )  ↔  𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 11 | 7 8 10 | cbvrexw | ⊢ ( ∃ 𝑤  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑤 )  ↔  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 12 | 11 | abbii | ⊢ { 𝑦  ∣  ∃ 𝑤  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑤 ) }  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) } | 
						
							| 13 | 4 12 | eqtrdi | ⊢ ( 𝐹  Fn  𝐴  →  ran  𝐹  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) } ) | 
						
							| 14 | 13 | eqeq1d | ⊢ ( 𝐹  Fn  𝐴  →  ( ran  𝐹  =  𝐵  ↔  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) }  =  𝐵 ) ) | 
						
							| 15 | 3 14 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( ran  𝐹  =  𝐵  ↔  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) }  =  𝐵 ) ) | 
						
							| 16 |  | dfbi2 | ⊢ ( ( ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 )  ↔  𝑦  ∈  𝐵 )  ↔  ( ( ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  𝑦  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  →  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 17 |  | nfcv | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 19 | 1 17 18 | nff | ⊢ Ⅎ 𝑥 𝐹 : 𝐴 ⟶ 𝐵 | 
						
							| 20 |  | nfv | ⊢ Ⅎ 𝑥 𝑦  ∈  𝐵 | 
						
							| 21 |  | simpr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  =  ( 𝐹 ‘ 𝑥 ) )  →  𝑦  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 22 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  =  ( 𝐹 ‘ 𝑥 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 24 | 21 23 | eqeltrd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  =  ( 𝐹 ‘ 𝑥 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 25 | 24 | exp31 | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 𝑥  ∈  𝐴  →  ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  𝑦  ∈  𝐵 ) ) ) | 
						
							| 26 | 19 20 25 | rexlimd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  𝑦  ∈  𝐵 ) ) | 
						
							| 27 | 26 | biantrurd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( ( 𝑦  ∈  𝐵  →  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) )  ↔  ( ( ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  𝑦  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  →  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) ) ) | 
						
							| 28 | 16 27 | bitr4id | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( ( ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 )  ↔  𝑦  ∈  𝐵 )  ↔  ( 𝑦  ∈  𝐵  →  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 29 | 28 | albidv | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( ∀ 𝑦 ( ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 )  ↔  𝑦  ∈  𝐵 )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐵  →  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 30 |  | eqabcb | ⊢ ( { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) }  =  𝐵  ↔  ∀ 𝑦 ( ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 )  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 31 |  | df-ral | ⊢ ( ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐵  →  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 32 | 29 30 31 | 3bitr4g | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) }  =  𝐵  ↔  ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 33 | 15 32 | bitrd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( ran  𝐹  =  𝐵  ↔  ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 34 | 33 | pm5.32i | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ran  𝐹  =  𝐵 )  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 35 | 2 34 | bitri | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) |