Step |
Hyp |
Ref |
Expression |
1 |
|
dffo3f.1 |
⊢ Ⅎ 𝑥 𝐹 |
2 |
|
dffo2 |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ran 𝐹 = 𝐵 ) ) |
3 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
4 |
|
fnrnfv |
⊢ ( 𝐹 Fn 𝐴 → ran 𝐹 = { 𝑦 ∣ ∃ 𝑤 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑤 ) } ) |
5 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑤 |
6 |
1 5
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑤 ) |
7 |
6
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑦 = ( 𝐹 ‘ 𝑤 ) |
8 |
|
nfv |
⊢ Ⅎ 𝑤 𝑦 = ( 𝐹 ‘ 𝑥 ) |
9 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑥 ) ) |
10 |
9
|
eqeq2d |
⊢ ( 𝑤 = 𝑥 → ( 𝑦 = ( 𝐹 ‘ 𝑤 ) ↔ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
11 |
7 8 10
|
cbvrexw |
⊢ ( ∃ 𝑤 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑤 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
12 |
11
|
abbii |
⊢ { 𝑦 ∣ ∃ 𝑤 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑤 ) } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } |
13 |
4 12
|
eqtrdi |
⊢ ( 𝐹 Fn 𝐴 → ran 𝐹 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } ) |
14 |
13
|
eqeq1d |
⊢ ( 𝐹 Fn 𝐴 → ( ran 𝐹 = 𝐵 ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } = 𝐵 ) ) |
15 |
3 14
|
syl |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ran 𝐹 = 𝐵 ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } = 𝐵 ) ) |
16 |
|
dfbi2 |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ 𝐵 ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) |
17 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
18 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
19 |
1 17 18
|
nff |
⊢ Ⅎ 𝑥 𝐹 : 𝐴 ⟶ 𝐵 |
20 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐵 |
21 |
|
simpr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
22 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
24 |
21 23
|
eqeltrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝑦 ∈ 𝐵 ) |
25 |
19 20 24
|
rexlimd3 |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) |
26 |
25
|
biantrurd |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
27 |
16 26
|
bitr4id |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) |
28 |
27
|
albidv |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) |
29 |
|
abeq1 |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } = 𝐵 ↔ ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ 𝐵 ) ) |
30 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
31 |
28 29 30
|
3bitr4g |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } = 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
32 |
15 31
|
bitrd |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ran 𝐹 = 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
33 |
32
|
pm5.32i |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ran 𝐹 = 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
34 |
2 33
|
bitri |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |