Metamath Proof Explorer


Theorem dffo5

Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007)

Ref Expression
Assertion dffo5 ( 𝐹 : 𝐴onto𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑦𝐵𝑥 𝑥 𝐹 𝑦 ) )

Proof

Step Hyp Ref Expression
1 dffo4 ( 𝐹 : 𝐴onto𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑦𝐵𝑥𝐴 𝑥 𝐹 𝑦 ) )
2 rexex ( ∃ 𝑥𝐴 𝑥 𝐹 𝑦 → ∃ 𝑥 𝑥 𝐹 𝑦 )
3 2 ralimi ( ∀ 𝑦𝐵𝑥𝐴 𝑥 𝐹 𝑦 → ∀ 𝑦𝐵𝑥 𝑥 𝐹 𝑦 )
4 3 anim2i ( ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑦𝐵𝑥𝐴 𝑥 𝐹 𝑦 ) → ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑦𝐵𝑥 𝑥 𝐹 𝑦 ) )
5 ffn ( 𝐹 : 𝐴𝐵𝐹 Fn 𝐴 )
6 fnbr ( ( 𝐹 Fn 𝐴𝑥 𝐹 𝑦 ) → 𝑥𝐴 )
7 6 ex ( 𝐹 Fn 𝐴 → ( 𝑥 𝐹 𝑦𝑥𝐴 ) )
8 5 7 syl ( 𝐹 : 𝐴𝐵 → ( 𝑥 𝐹 𝑦𝑥𝐴 ) )
9 8 ancrd ( 𝐹 : 𝐴𝐵 → ( 𝑥 𝐹 𝑦 → ( 𝑥𝐴𝑥 𝐹 𝑦 ) ) )
10 9 eximdv ( 𝐹 : 𝐴𝐵 → ( ∃ 𝑥 𝑥 𝐹 𝑦 → ∃ 𝑥 ( 𝑥𝐴𝑥 𝐹 𝑦 ) ) )
11 df-rex ( ∃ 𝑥𝐴 𝑥 𝐹 𝑦 ↔ ∃ 𝑥 ( 𝑥𝐴𝑥 𝐹 𝑦 ) )
12 10 11 syl6ibr ( 𝐹 : 𝐴𝐵 → ( ∃ 𝑥 𝑥 𝐹 𝑦 → ∃ 𝑥𝐴 𝑥 𝐹 𝑦 ) )
13 12 ralimdv ( 𝐹 : 𝐴𝐵 → ( ∀ 𝑦𝐵𝑥 𝑥 𝐹 𝑦 → ∀ 𝑦𝐵𝑥𝐴 𝑥 𝐹 𝑦 ) )
14 13 imdistani ( ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑦𝐵𝑥 𝑥 𝐹 𝑦 ) → ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑦𝐵𝑥𝐴 𝑥 𝐹 𝑦 ) )
15 4 14 impbii ( ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑦𝐵𝑥𝐴 𝑥 𝐹 𝑦 ) ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑦𝐵𝑥 𝑥 𝐹 𝑦 ) )
16 1 15 bitri ( 𝐹 : 𝐴onto𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑦𝐵𝑥 𝑥 𝐹 𝑦 ) )