Step |
Hyp |
Ref |
Expression |
1 |
|
dffo4 |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) ) |
2 |
|
rexex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 → ∃ 𝑥 𝑥 𝐹 𝑦 ) |
3 |
2
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 𝑥 𝐹 𝑦 ) |
4 |
3
|
anim2i |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 𝑥 𝐹 𝑦 ) ) |
5 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
6 |
|
fnbr |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 𝐹 𝑦 ) → 𝑥 ∈ 𝐴 ) |
7 |
6
|
ex |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑥 𝐹 𝑦 → 𝑥 ∈ 𝐴 ) ) |
8 |
5 7
|
syl |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝑥 𝐹 𝑦 → 𝑥 ∈ 𝐴 ) ) |
9 |
8
|
ancrd |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝑥 𝐹 𝑦 → ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ) ) |
10 |
9
|
eximdv |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∃ 𝑥 𝑥 𝐹 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ) ) |
11 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ) |
12 |
10 11
|
syl6ibr |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∃ 𝑥 𝑥 𝐹 𝑦 → ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) ) |
13 |
12
|
ralimdv |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 𝑥 𝐹 𝑦 → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) ) |
14 |
13
|
imdistani |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 𝑥 𝐹 𝑦 ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) ) |
15 |
4 14
|
impbii |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 𝑥 𝐹 𝑦 ) ) |
16 |
1 15
|
bitri |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 𝑥 𝐹 𝑦 ) ) |