Metamath Proof Explorer


Theorem dffr2

Description: Alternate definition of well-founded relation. Similar to Definition 6.21 of TakeutiZaring p. 30. (Contributed by NM, 17-Feb-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by Mario Carneiro, 23-Jun-2015) Avoid ax-10 , ax-11 , ax-12 , but use ax-8 . (Revised by Gino Giotto, 3-Oct-2024)

Ref Expression
Assertion dffr2 ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 { 𝑧𝑥𝑧 𝑅 𝑦 } = ∅ ) )

Proof

Step Hyp Ref Expression
1 df-fr ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑤𝑥 ¬ 𝑤 𝑅 𝑦 ) )
2 breq1 ( 𝑧 = 𝑤 → ( 𝑧 𝑅 𝑦𝑤 𝑅 𝑦 ) )
3 2 rabeq0w ( { 𝑧𝑥𝑧 𝑅 𝑦 } = ∅ ↔ ∀ 𝑤𝑥 ¬ 𝑤 𝑅 𝑦 )
4 3 rexbii ( ∃ 𝑦𝑥 { 𝑧𝑥𝑧 𝑅 𝑦 } = ∅ ↔ ∃ 𝑦𝑥𝑤𝑥 ¬ 𝑤 𝑅 𝑦 )
5 4 imbi2i ( ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 { 𝑧𝑥𝑧 𝑅 𝑦 } = ∅ ) ↔ ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑤𝑥 ¬ 𝑤 𝑅 𝑦 ) )
6 5 albii ( ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 { 𝑧𝑥𝑧 𝑅 𝑦 } = ∅ ) ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑤𝑥 ¬ 𝑤 𝑅 𝑦 ) )
7 1 6 bitr4i ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 { 𝑧𝑥𝑧 𝑅 𝑦 } = ∅ ) )