Step |
Hyp |
Ref |
Expression |
1 |
|
dffr2 |
⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) ) |
2 |
|
iniseg |
⊢ ( 𝑦 ∈ V → ( ◡ 𝑅 “ { 𝑦 } ) = { 𝑧 ∣ 𝑧 𝑅 𝑦 } ) |
3 |
2
|
elv |
⊢ ( ◡ 𝑅 “ { 𝑦 } ) = { 𝑧 ∣ 𝑧 𝑅 𝑦 } |
4 |
3
|
ineq2i |
⊢ ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ( 𝑥 ∩ { 𝑧 ∣ 𝑧 𝑅 𝑦 } ) |
5 |
|
dfrab3 |
⊢ { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ( 𝑥 ∩ { 𝑧 ∣ 𝑧 𝑅 𝑦 } ) |
6 |
4 5
|
eqtr4i |
⊢ ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } |
7 |
6
|
eqeq1i |
⊢ ( ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ↔ { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) |
8 |
7
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ↔ ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) |
9 |
8
|
imbi2i |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) ) |
10 |
9
|
albii |
⊢ ( ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) ) |
11 |
1 10
|
bitr4i |
⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) |