| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dffr3 | ⊢ ( 𝑅  Fr  𝐴  ↔  ∀ 𝑥 ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 ( 𝑥  ∩  ( ◡ 𝑅  “  { 𝑦 } ) )  =  ∅ ) ) | 
						
							| 2 |  | df-pred | ⊢ Pred ( 𝑅 ,  𝑥 ,  𝑦 )  =  ( 𝑥  ∩  ( ◡ 𝑅  “  { 𝑦 } ) ) | 
						
							| 3 | 2 | eqeq1i | ⊢ ( Pred ( 𝑅 ,  𝑥 ,  𝑦 )  =  ∅  ↔  ( 𝑥  ∩  ( ◡ 𝑅  “  { 𝑦 } ) )  =  ∅ ) | 
						
							| 4 | 3 | rexbii | ⊢ ( ∃ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝑥 ,  𝑦 )  =  ∅  ↔  ∃ 𝑦  ∈  𝑥 ( 𝑥  ∩  ( ◡ 𝑅  “  { 𝑦 } ) )  =  ∅ ) | 
						
							| 5 | 4 | imbi2i | ⊢ ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝑥 ,  𝑦 )  =  ∅ )  ↔  ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 ( 𝑥  ∩  ( ◡ 𝑅  “  { 𝑦 } ) )  =  ∅ ) ) | 
						
							| 6 | 5 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝑥 ,  𝑦 )  =  ∅ )  ↔  ∀ 𝑥 ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 ( 𝑥  ∩  ( ◡ 𝑅  “  { 𝑦 } ) )  =  ∅ ) ) | 
						
							| 7 | 1 6 | bitr4i | ⊢ ( 𝑅  Fr  𝐴  ↔  ∀ 𝑥 ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝑥 ,  𝑦 )  =  ∅ ) ) |