Metamath Proof Explorer


Theorem dffr4

Description: Alternate definition of well-founded relation. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion dffr4 ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 Pred ( 𝑅 , 𝑥 , 𝑦 ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 dffr3 ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) )
2 df-pred Pred ( 𝑅 , 𝑥 , 𝑦 ) = ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) )
3 2 eqeq1i ( Pred ( 𝑅 , 𝑥 , 𝑦 ) = ∅ ↔ ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ )
4 3 rexbii ( ∃ 𝑦𝑥 Pred ( 𝑅 , 𝑥 , 𝑦 ) = ∅ ↔ ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ )
5 4 imbi2i ( ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 Pred ( 𝑅 , 𝑥 , 𝑦 ) = ∅ ) ↔ ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) )
6 5 albii ( ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 Pred ( 𝑅 , 𝑥 , 𝑦 ) = ∅ ) ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) )
7 1 6 bitr4i ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 Pred ( 𝑅 , 𝑥 , 𝑦 ) = ∅ ) )