Step |
Hyp |
Ref |
Expression |
1 |
|
dffr3 |
⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) |
2 |
|
df-pred |
⊢ Pred ( 𝑅 , 𝑥 , 𝑦 ) = ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) |
3 |
2
|
eqeq1i |
⊢ ( Pred ( 𝑅 , 𝑥 , 𝑦 ) = ∅ ↔ ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) |
4 |
3
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝑥 , 𝑦 ) = ∅ ↔ ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) |
5 |
4
|
imbi2i |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝑥 , 𝑦 ) = ∅ ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) |
6 |
5
|
albii |
⊢ ( ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝑥 , 𝑦 ) = ∅ ) ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) |
7 |
1 6
|
bitr4i |
⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝑥 , 𝑦 ) = ∅ ) ) |