| Step |
Hyp |
Ref |
Expression |
| 1 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
| 2 |
1
|
bicomi |
⊢ ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ 𝒫 𝐴 ) |
| 3 |
|
velsn |
⊢ ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ ) |
| 4 |
3
|
bicomi |
⊢ ( 𝑥 = ∅ ↔ 𝑥 ∈ { ∅ } ) |
| 5 |
4
|
necon3abii |
⊢ ( 𝑥 ≠ ∅ ↔ ¬ 𝑥 ∈ { ∅ } ) |
| 6 |
2 5
|
anbi12i |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ { ∅ } ) ) |
| 7 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ { ∅ } ) ) |
| 8 |
6 7
|
bitr4i |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ↔ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
| 9 |
8
|
imbi1i |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ↔ ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
| 10 |
9
|
albii |
⊢ ( ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
| 11 |
|
df-fr |
⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
| 12 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
| 13 |
10 11 12
|
3bitr4i |
⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) |