Step |
Hyp |
Ref |
Expression |
1 |
|
df-fun |
⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ) ) |
2 |
|
cotrg |
⊢ ( ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ↔ ∀ 𝑦 ∀ 𝑥 ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ) |
3 |
|
breq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 ◡ 𝐴 𝑥 ↔ 𝑤 ◡ 𝐴 𝑥 ) ) |
4 |
3
|
anbi1d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) ↔ ( 𝑤 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) ) ) |
5 |
|
breq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 I 𝑧 ↔ 𝑤 I 𝑧 ) ) |
6 |
4 5
|
imbi12d |
⊢ ( 𝑦 = 𝑤 → ( ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ↔ ( ( 𝑤 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑤 I 𝑧 ) ) ) |
7 |
6
|
albidv |
⊢ ( 𝑦 = 𝑤 → ( ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ↔ ∀ 𝑧 ( ( 𝑤 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑤 I 𝑧 ) ) ) |
8 |
|
breq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑦 ◡ 𝐴 𝑥 ↔ 𝑦 ◡ 𝐴 𝑤 ) ) |
9 |
|
breq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 𝐴 𝑧 ↔ 𝑤 𝐴 𝑧 ) ) |
10 |
8 9
|
anbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) ↔ ( 𝑦 ◡ 𝐴 𝑤 ∧ 𝑤 𝐴 𝑧 ) ) ) |
11 |
10
|
imbi1d |
⊢ ( 𝑥 = 𝑤 → ( ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ↔ ( ( 𝑦 ◡ 𝐴 𝑤 ∧ 𝑤 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ) ) |
12 |
11
|
albidv |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ↔ ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑤 ∧ 𝑤 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ) ) |
13 |
7 12
|
alcomw |
⊢ ( ∀ 𝑦 ∀ 𝑥 ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ) |
14 |
|
vex |
⊢ 𝑦 ∈ V |
15 |
|
vex |
⊢ 𝑥 ∈ V |
16 |
14 15
|
brcnv |
⊢ ( 𝑦 ◡ 𝐴 𝑥 ↔ 𝑥 𝐴 𝑦 ) |
17 |
16
|
anbi1i |
⊢ ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) ↔ ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) ) |
18 |
|
vex |
⊢ 𝑧 ∈ V |
19 |
18
|
ideq |
⊢ ( 𝑦 I 𝑧 ↔ 𝑦 = 𝑧 ) |
20 |
17 19
|
imbi12i |
⊢ ( ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ↔ ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) |
21 |
20
|
3albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) |
22 |
13 21
|
bitri |
⊢ ( ∀ 𝑦 ∀ 𝑥 ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) |
23 |
2 22
|
bitri |
⊢ ( ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) |
24 |
23
|
anbi2i |
⊢ ( ( Rel 𝐴 ∧ ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ) ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
25 |
1 24
|
bitri |
⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) ) |