| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-fun | ⊢ ( Fun  𝐴  ↔  ( Rel  𝐴  ∧  ( 𝐴  ∘  ◡ 𝐴 )  ⊆   I  ) ) | 
						
							| 2 |  | cotrg | ⊢ ( ( 𝐴  ∘  ◡ 𝐴 )  ⊆   I   ↔  ∀ 𝑦 ∀ 𝑥 ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑥  ∧  𝑥 𝐴 𝑧 )  →  𝑦  I  𝑧 ) ) | 
						
							| 3 |  | alcom | ⊢ ( ∀ 𝑦 ∀ 𝑥 ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑥  ∧  𝑥 𝐴 𝑧 )  →  𝑦  I  𝑧 )  ↔  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑥  ∧  𝑥 𝐴 𝑧 )  →  𝑦  I  𝑧 ) ) | 
						
							| 4 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 5 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 6 | 4 5 | brcnv | ⊢ ( 𝑦 ◡ 𝐴 𝑥  ↔  𝑥 𝐴 𝑦 ) | 
						
							| 7 | 6 | anbi1i | ⊢ ( ( 𝑦 ◡ 𝐴 𝑥  ∧  𝑥 𝐴 𝑧 )  ↔  ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 ) ) | 
						
							| 8 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 9 | 8 | ideq | ⊢ ( 𝑦  I  𝑧  ↔  𝑦  =  𝑧 ) | 
						
							| 10 | 7 9 | imbi12i | ⊢ ( ( ( 𝑦 ◡ 𝐴 𝑥  ∧  𝑥 𝐴 𝑧 )  →  𝑦  I  𝑧 )  ↔  ( ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 11 | 10 | 3albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑥  ∧  𝑥 𝐴 𝑧 )  →  𝑦  I  𝑧 )  ↔  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 12 | 3 11 | bitri | ⊢ ( ∀ 𝑦 ∀ 𝑥 ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑥  ∧  𝑥 𝐴 𝑧 )  →  𝑦  I  𝑧 )  ↔  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 13 | 2 12 | bitri | ⊢ ( ( 𝐴  ∘  ◡ 𝐴 )  ⊆   I   ↔  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 14 | 13 | anbi2i | ⊢ ( ( Rel  𝐴  ∧  ( 𝐴  ∘  ◡ 𝐴 )  ⊆   I  )  ↔  ( Rel  𝐴  ∧  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 15 | 1 14 | bitri | ⊢ ( Fun  𝐴  ↔  ( Rel  𝐴  ∧  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 ) ) ) |