Metamath Proof Explorer


Theorem dffun2OLD

Description: Obsolete version of dffun2 as of 29-Dec-2024. (Contributed by NM, 29-Dec-1996) Avoid ax-10 , ax-12 . (Revised by SN, 19-Dec-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dffun2OLD ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝐴 𝑦𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 df-fun ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ( 𝐴 𝐴 ) ⊆ I ) )
2 cotrg ( ( 𝐴 𝐴 ) ⊆ I ↔ ∀ 𝑦𝑥𝑧 ( ( 𝑦 𝐴 𝑥𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) )
3 alcom ( ∀ 𝑦𝑥𝑧 ( ( 𝑦 𝐴 𝑥𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑦 𝐴 𝑥𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) )
4 vex 𝑦 ∈ V
5 vex 𝑥 ∈ V
6 4 5 brcnv ( 𝑦 𝐴 𝑥𝑥 𝐴 𝑦 )
7 6 anbi1i ( ( 𝑦 𝐴 𝑥𝑥 𝐴 𝑧 ) ↔ ( 𝑥 𝐴 𝑦𝑥 𝐴 𝑧 ) )
8 vex 𝑧 ∈ V
9 8 ideq ( 𝑦 I 𝑧𝑦 = 𝑧 )
10 7 9 imbi12i ( ( ( 𝑦 𝐴 𝑥𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ↔ ( ( 𝑥 𝐴 𝑦𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) )
11 10 3albii ( ∀ 𝑥𝑦𝑧 ( ( 𝑦 𝐴 𝑥𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝐴 𝑦𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) )
12 3 11 bitri ( ∀ 𝑦𝑥𝑧 ( ( 𝑦 𝐴 𝑥𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝐴 𝑦𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) )
13 2 12 bitri ( ( 𝐴 𝐴 ) ⊆ I ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝐴 𝑦𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) )
14 13 anbi2i ( ( Rel 𝐴 ∧ ( 𝐴 𝐴 ) ⊆ I ) ↔ ( Rel 𝐴 ∧ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝐴 𝑦𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) )
15 1 14 bitri ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝐴 𝑦𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) )