| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-fun | ⊢ ( Fun  𝐴  ↔  ( Rel  𝐴  ∧  ( 𝐴  ∘  ◡ 𝐴 )  ⊆   I  ) ) | 
						
							| 2 |  | df-id | ⊢  I   =  { 〈 𝑦 ,  𝑧 〉  ∣  𝑦  =  𝑧 } | 
						
							| 3 | 2 | sseq2i | ⊢ ( ( 𝐴  ∘  ◡ 𝐴 )  ⊆   I   ↔  ( 𝐴  ∘  ◡ 𝐴 )  ⊆  { 〈 𝑦 ,  𝑧 〉  ∣  𝑦  =  𝑧 } ) | 
						
							| 4 |  | df-co | ⊢ ( 𝐴  ∘  ◡ 𝐴 )  =  { 〈 𝑦 ,  𝑧 〉  ∣  ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥  ∧  𝑥 𝐴 𝑧 ) } | 
						
							| 5 | 4 | sseq1i | ⊢ ( ( 𝐴  ∘  ◡ 𝐴 )  ⊆  { 〈 𝑦 ,  𝑧 〉  ∣  𝑦  =  𝑧 }  ↔  { 〈 𝑦 ,  𝑧 〉  ∣  ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥  ∧  𝑥 𝐴 𝑧 ) }  ⊆  { 〈 𝑦 ,  𝑧 〉  ∣  𝑦  =  𝑧 } ) | 
						
							| 6 |  | ssopab2bw | ⊢ ( { 〈 𝑦 ,  𝑧 〉  ∣  ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥  ∧  𝑥 𝐴 𝑧 ) }  ⊆  { 〈 𝑦 ,  𝑧 〉  ∣  𝑦  =  𝑧 }  ↔  ∀ 𝑦 ∀ 𝑧 ( ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 7 | 3 5 6 | 3bitri | ⊢ ( ( 𝐴  ∘  ◡ 𝐴 )  ⊆   I   ↔  ∀ 𝑦 ∀ 𝑧 ( ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 8 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 9 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 10 | 8 9 | brcnv | ⊢ ( 𝑦 ◡ 𝐴 𝑥  ↔  𝑥 𝐴 𝑦 ) | 
						
							| 11 | 10 | anbi1i | ⊢ ( ( 𝑦 ◡ 𝐴 𝑥  ∧  𝑥 𝐴 𝑧 )  ↔  ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 ) ) | 
						
							| 12 | 11 | exbii | ⊢ ( ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥  ∧  𝑥 𝐴 𝑧 )  ↔  ∃ 𝑥 ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 ) ) | 
						
							| 13 | 12 | imbi1i | ⊢ ( ( ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 )  ↔  ( ∃ 𝑥 ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 14 |  | 19.23v | ⊢ ( ∀ 𝑥 ( ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 )  ↔  ( ∃ 𝑥 ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 15 | 13 14 | bitr4i | ⊢ ( ( ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 )  ↔  ∀ 𝑥 ( ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 16 | 15 | albii | ⊢ ( ∀ 𝑧 ( ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 )  ↔  ∀ 𝑧 ∀ 𝑥 ( ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 17 |  | alcom | ⊢ ( ∀ 𝑧 ∀ 𝑥 ( ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 )  ↔  ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 18 | 16 17 | bitri | ⊢ ( ∀ 𝑧 ( ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 )  ↔  ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 19 | 18 | albii | ⊢ ( ∀ 𝑦 ∀ 𝑧 ( ∃ 𝑥 ( 𝑦 ◡ 𝐴 𝑥  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 )  ↔  ∀ 𝑦 ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 20 |  | alcom | ⊢ ( ∀ 𝑦 ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 )  ↔  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 21 | 7 19 20 | 3bitri | ⊢ ( ( 𝐴  ∘  ◡ 𝐴 )  ⊆   I   ↔  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 22 | 21 | anbi2i | ⊢ ( ( Rel  𝐴  ∧  ( 𝐴  ∘  ◡ 𝐴 )  ⊆   I  )  ↔  ( Rel  𝐴  ∧  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 23 | 1 22 | bitri | ⊢ ( Fun  𝐴  ↔  ( Rel  𝐴  ∧  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦  ∧  𝑥 𝐴 𝑧 )  →  𝑦  =  𝑧 ) ) ) |