Metamath Proof Explorer


Theorem dffun3

Description: Alternate definition of function. (Contributed by NM, 29-Dec-1996)

Ref Expression
Assertion dffun3 ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥𝑧𝑦 ( 𝑥 𝐴 𝑦𝑦 = 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 dffun2 ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝐴 𝑦𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) )
2 breq2 ( 𝑦 = 𝑧 → ( 𝑥 𝐴 𝑦𝑥 𝐴 𝑧 ) )
3 2 mo4 ( ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ∀ 𝑦𝑧 ( ( 𝑥 𝐴 𝑦𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) )
4 df-mo ( ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ∃ 𝑧𝑦 ( 𝑥 𝐴 𝑦𝑦 = 𝑧 ) )
5 3 4 bitr3i ( ∀ 𝑦𝑧 ( ( 𝑥 𝐴 𝑦𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ↔ ∃ 𝑧𝑦 ( 𝑥 𝐴 𝑦𝑦 = 𝑧 ) )
6 5 albii ( ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝐴 𝑦𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑥𝑧𝑦 ( 𝑥 𝐴 𝑦𝑦 = 𝑧 ) )
7 6 anbi2i ( ( Rel 𝐴 ∧ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝐴 𝑦𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) ↔ ( Rel 𝐴 ∧ ∀ 𝑥𝑧𝑦 ( 𝑥 𝐴 𝑦𝑦 = 𝑧 ) ) )
8 1 7 bitri ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥𝑧𝑦 ( 𝑥 𝐴 𝑦𝑦 = 𝑧 ) ) )