| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dffun2 |
⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 2 |
|
breq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐴 𝑧 ) ) |
| 3 |
2
|
mo4 |
⊢ ( ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 4 |
|
df-mo |
⊢ ( ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ∃ 𝑧 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑦 = 𝑧 ) ) |
| 5 |
3 4
|
bitr3i |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ↔ ∃ 𝑧 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑦 = 𝑧 ) ) |
| 6 |
5
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑦 = 𝑧 ) ) |
| 7 |
6
|
anbi2i |
⊢ ( ( Rel 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑦 = 𝑧 ) ) ) |
| 8 |
1 7
|
bitri |
⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑦 = 𝑧 ) ) ) |