Metamath Proof Explorer


Theorem dffun6

Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995)

Ref Expression
Assertion dffun6 ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) )

Proof

Step Hyp Ref Expression
1 nfcv 𝑥 𝐹
2 nfcv 𝑦 𝐹
3 1 2 dffun6f ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) )