| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dffun6f.1 |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
dffun6f.2 |
⊢ Ⅎ 𝑦 𝐴 |
| 3 |
|
dffun3 |
⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑤 ∃ 𝑢 ∀ 𝑣 ( 𝑤 𝐴 𝑣 → 𝑣 = 𝑢 ) ) ) |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑤 |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑣 |
| 6 |
4 2 5
|
nfbr |
⊢ Ⅎ 𝑦 𝑤 𝐴 𝑣 |
| 7 |
|
nfv |
⊢ Ⅎ 𝑣 𝑤 𝐴 𝑦 |
| 8 |
|
breq2 |
⊢ ( 𝑣 = 𝑦 → ( 𝑤 𝐴 𝑣 ↔ 𝑤 𝐴 𝑦 ) ) |
| 9 |
6 7 8
|
cbvmow |
⊢ ( ∃* 𝑣 𝑤 𝐴 𝑣 ↔ ∃* 𝑦 𝑤 𝐴 𝑦 ) |
| 10 |
9
|
albii |
⊢ ( ∀ 𝑤 ∃* 𝑣 𝑤 𝐴 𝑣 ↔ ∀ 𝑤 ∃* 𝑦 𝑤 𝐴 𝑦 ) |
| 11 |
|
df-mo |
⊢ ( ∃* 𝑣 𝑤 𝐴 𝑣 ↔ ∃ 𝑢 ∀ 𝑣 ( 𝑤 𝐴 𝑣 → 𝑣 = 𝑢 ) ) |
| 12 |
11
|
albii |
⊢ ( ∀ 𝑤 ∃* 𝑣 𝑤 𝐴 𝑣 ↔ ∀ 𝑤 ∃ 𝑢 ∀ 𝑣 ( 𝑤 𝐴 𝑣 → 𝑣 = 𝑢 ) ) |
| 13 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑤 |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 15 |
13 1 14
|
nfbr |
⊢ Ⅎ 𝑥 𝑤 𝐴 𝑦 |
| 16 |
15
|
nfmov |
⊢ Ⅎ 𝑥 ∃* 𝑦 𝑤 𝐴 𝑦 |
| 17 |
|
nfv |
⊢ Ⅎ 𝑤 ∃* 𝑦 𝑥 𝐴 𝑦 |
| 18 |
|
breq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 𝐴 𝑦 ↔ 𝑥 𝐴 𝑦 ) ) |
| 19 |
18
|
mobidv |
⊢ ( 𝑤 = 𝑥 → ( ∃* 𝑦 𝑤 𝐴 𝑦 ↔ ∃* 𝑦 𝑥 𝐴 𝑦 ) ) |
| 20 |
16 17 19
|
cbvalv1 |
⊢ ( ∀ 𝑤 ∃* 𝑦 𝑤 𝐴 𝑦 ↔ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) |
| 21 |
10 12 20
|
3bitr3ri |
⊢ ( ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ∀ 𝑤 ∃ 𝑢 ∀ 𝑣 ( 𝑤 𝐴 𝑣 → 𝑣 = 𝑢 ) ) |
| 22 |
21
|
anbi2i |
⊢ ( ( Rel 𝐴 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) ↔ ( Rel 𝐴 ∧ ∀ 𝑤 ∃ 𝑢 ∀ 𝑣 ( 𝑤 𝐴 𝑣 → 𝑣 = 𝑢 ) ) ) |
| 23 |
3 22
|
bitr4i |
⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) ) |