Step |
Hyp |
Ref |
Expression |
1 |
|
dffun6f.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
dffun6f.2 |
⊢ Ⅎ 𝑦 𝐴 |
3 |
|
dffun3 |
⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑤 ∃ 𝑢 ∀ 𝑣 ( 𝑤 𝐴 𝑣 → 𝑣 = 𝑢 ) ) ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑤 |
5 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑣 |
6 |
4 2 5
|
nfbr |
⊢ Ⅎ 𝑦 𝑤 𝐴 𝑣 |
7 |
|
nfv |
⊢ Ⅎ 𝑣 𝑤 𝐴 𝑦 |
8 |
|
breq2 |
⊢ ( 𝑣 = 𝑦 → ( 𝑤 𝐴 𝑣 ↔ 𝑤 𝐴 𝑦 ) ) |
9 |
6 7 8
|
cbvmow |
⊢ ( ∃* 𝑣 𝑤 𝐴 𝑣 ↔ ∃* 𝑦 𝑤 𝐴 𝑦 ) |
10 |
9
|
albii |
⊢ ( ∀ 𝑤 ∃* 𝑣 𝑤 𝐴 𝑣 ↔ ∀ 𝑤 ∃* 𝑦 𝑤 𝐴 𝑦 ) |
11 |
|
df-mo |
⊢ ( ∃* 𝑣 𝑤 𝐴 𝑣 ↔ ∃ 𝑢 ∀ 𝑣 ( 𝑤 𝐴 𝑣 → 𝑣 = 𝑢 ) ) |
12 |
11
|
albii |
⊢ ( ∀ 𝑤 ∃* 𝑣 𝑤 𝐴 𝑣 ↔ ∀ 𝑤 ∃ 𝑢 ∀ 𝑣 ( 𝑤 𝐴 𝑣 → 𝑣 = 𝑢 ) ) |
13 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑤 |
14 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
15 |
13 1 14
|
nfbr |
⊢ Ⅎ 𝑥 𝑤 𝐴 𝑦 |
16 |
15
|
nfmov |
⊢ Ⅎ 𝑥 ∃* 𝑦 𝑤 𝐴 𝑦 |
17 |
|
nfv |
⊢ Ⅎ 𝑤 ∃* 𝑦 𝑥 𝐴 𝑦 |
18 |
|
breq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 𝐴 𝑦 ↔ 𝑥 𝐴 𝑦 ) ) |
19 |
18
|
mobidv |
⊢ ( 𝑤 = 𝑥 → ( ∃* 𝑦 𝑤 𝐴 𝑦 ↔ ∃* 𝑦 𝑥 𝐴 𝑦 ) ) |
20 |
16 17 19
|
cbvalv1 |
⊢ ( ∀ 𝑤 ∃* 𝑦 𝑤 𝐴 𝑦 ↔ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) |
21 |
10 12 20
|
3bitr3ri |
⊢ ( ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ∀ 𝑤 ∃ 𝑢 ∀ 𝑣 ( 𝑤 𝐴 𝑣 → 𝑣 = 𝑢 ) ) |
22 |
21
|
anbi2i |
⊢ ( ( Rel 𝐴 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) ↔ ( Rel 𝐴 ∧ ∀ 𝑤 ∃ 𝑢 ∀ 𝑣 ( 𝑤 𝐴 𝑣 → 𝑣 = 𝑢 ) ) ) |
23 |
3 22
|
bitr4i |
⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) ) |