Step |
Hyp |
Ref |
Expression |
1 |
|
dffun6 |
⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) ) |
2 |
|
moabs |
⊢ ( ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ( ∃ 𝑦 𝑥 𝐴 𝑦 → ∃* 𝑦 𝑥 𝐴 𝑦 ) ) |
3 |
|
vex |
⊢ 𝑥 ∈ V |
4 |
3
|
eldm |
⊢ ( 𝑥 ∈ dom 𝐴 ↔ ∃ 𝑦 𝑥 𝐴 𝑦 ) |
5 |
4
|
imbi1i |
⊢ ( ( 𝑥 ∈ dom 𝐴 → ∃* 𝑦 𝑥 𝐴 𝑦 ) ↔ ( ∃ 𝑦 𝑥 𝐴 𝑦 → ∃* 𝑦 𝑥 𝐴 𝑦 ) ) |
6 |
2 5
|
bitr4i |
⊢ ( ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ( 𝑥 ∈ dom 𝐴 → ∃* 𝑦 𝑥 𝐴 𝑦 ) ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ∀ 𝑥 ( 𝑥 ∈ dom 𝐴 → ∃* 𝑦 𝑥 𝐴 𝑦 ) ) |
8 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ dom 𝐴 ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ∀ 𝑥 ( 𝑥 ∈ dom 𝐴 → ∃* 𝑦 𝑥 𝐴 𝑦 ) ) |
9 |
7 8
|
bitr4i |
⊢ ( ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ∀ 𝑥 ∈ dom 𝐴 ∃* 𝑦 𝑥 𝐴 𝑦 ) |
10 |
9
|
anbi2i |
⊢ ( ( Rel 𝐴 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∃* 𝑦 𝑥 𝐴 𝑦 ) ) |
11 |
1 10
|
bitri |
⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∃* 𝑦 𝑥 𝐴 𝑦 ) ) |