| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dffun6 | ⊢ ( Fun  𝐴  ↔  ( Rel  𝐴  ∧  ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) ) | 
						
							| 2 |  | moabs | ⊢ ( ∃* 𝑦 𝑥 𝐴 𝑦  ↔  ( ∃ 𝑦 𝑥 𝐴 𝑦  →  ∃* 𝑦 𝑥 𝐴 𝑦 ) ) | 
						
							| 3 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 4 | 3 | eldm | ⊢ ( 𝑥  ∈  dom  𝐴  ↔  ∃ 𝑦 𝑥 𝐴 𝑦 ) | 
						
							| 5 | 4 | imbi1i | ⊢ ( ( 𝑥  ∈  dom  𝐴  →  ∃* 𝑦 𝑥 𝐴 𝑦 )  ↔  ( ∃ 𝑦 𝑥 𝐴 𝑦  →  ∃* 𝑦 𝑥 𝐴 𝑦 ) ) | 
						
							| 6 | 2 5 | bitr4i | ⊢ ( ∃* 𝑦 𝑥 𝐴 𝑦  ↔  ( 𝑥  ∈  dom  𝐴  →  ∃* 𝑦 𝑥 𝐴 𝑦 ) ) | 
						
							| 7 | 6 | albii | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦  ↔  ∀ 𝑥 ( 𝑥  ∈  dom  𝐴  →  ∃* 𝑦 𝑥 𝐴 𝑦 ) ) | 
						
							| 8 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  dom  𝐴 ∃* 𝑦 𝑥 𝐴 𝑦  ↔  ∀ 𝑥 ( 𝑥  ∈  dom  𝐴  →  ∃* 𝑦 𝑥 𝐴 𝑦 ) ) | 
						
							| 9 | 7 8 | bitr4i | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦  ↔  ∀ 𝑥  ∈  dom  𝐴 ∃* 𝑦 𝑥 𝐴 𝑦 ) | 
						
							| 10 | 9 | anbi2i | ⊢ ( ( Rel  𝐴  ∧  ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 )  ↔  ( Rel  𝐴  ∧  ∀ 𝑥  ∈  dom  𝐴 ∃* 𝑦 𝑥 𝐴 𝑦 ) ) | 
						
							| 11 | 1 10 | bitri | ⊢ ( Fun  𝐴  ↔  ( Rel  𝐴  ∧  ∀ 𝑥  ∈  dom  𝐴 ∃* 𝑦 𝑥 𝐴 𝑦 ) ) |