| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dffun7 | ⊢ ( Fun  𝐴  ↔  ( Rel  𝐴  ∧  ∀ 𝑥  ∈  dom  𝐴 ∃* 𝑦 𝑥 𝐴 𝑦 ) ) | 
						
							| 2 |  | moeu | ⊢ ( ∃* 𝑦 𝑥 𝐴 𝑦  ↔  ( ∃ 𝑦 𝑥 𝐴 𝑦  →  ∃! 𝑦 𝑥 𝐴 𝑦 ) ) | 
						
							| 3 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 4 | 3 | eldm | ⊢ ( 𝑥  ∈  dom  𝐴  ↔  ∃ 𝑦 𝑥 𝐴 𝑦 ) | 
						
							| 5 |  | pm5.5 | ⊢ ( ∃ 𝑦 𝑥 𝐴 𝑦  →  ( ( ∃ 𝑦 𝑥 𝐴 𝑦  →  ∃! 𝑦 𝑥 𝐴 𝑦 )  ↔  ∃! 𝑦 𝑥 𝐴 𝑦 ) ) | 
						
							| 6 | 4 5 | sylbi | ⊢ ( 𝑥  ∈  dom  𝐴  →  ( ( ∃ 𝑦 𝑥 𝐴 𝑦  →  ∃! 𝑦 𝑥 𝐴 𝑦 )  ↔  ∃! 𝑦 𝑥 𝐴 𝑦 ) ) | 
						
							| 7 | 2 6 | bitrid | ⊢ ( 𝑥  ∈  dom  𝐴  →  ( ∃* 𝑦 𝑥 𝐴 𝑦  ↔  ∃! 𝑦 𝑥 𝐴 𝑦 ) ) | 
						
							| 8 | 7 | ralbiia | ⊢ ( ∀ 𝑥  ∈  dom  𝐴 ∃* 𝑦 𝑥 𝐴 𝑦  ↔  ∀ 𝑥  ∈  dom  𝐴 ∃! 𝑦 𝑥 𝐴 𝑦 ) | 
						
							| 9 | 8 | anbi2i | ⊢ ( ( Rel  𝐴  ∧  ∀ 𝑥  ∈  dom  𝐴 ∃* 𝑦 𝑥 𝐴 𝑦 )  ↔  ( Rel  𝐴  ∧  ∀ 𝑥  ∈  dom  𝐴 ∃! 𝑦 𝑥 𝐴 𝑦 ) ) | 
						
							| 10 | 1 9 | bitri | ⊢ ( Fun  𝐴  ↔  ( Rel  𝐴  ∧  ∀ 𝑥  ∈  dom  𝐴 ∃! 𝑦 𝑥 𝐴 𝑦 ) ) |