Step |
Hyp |
Ref |
Expression |
1 |
|
dffun7 |
⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∃* 𝑦 𝑥 𝐴 𝑦 ) ) |
2 |
|
vex |
⊢ 𝑥 ∈ V |
3 |
|
vex |
⊢ 𝑦 ∈ V |
4 |
2 3
|
brelrn |
⊢ ( 𝑥 𝐴 𝑦 → 𝑦 ∈ ran 𝐴 ) |
5 |
4
|
pm4.71ri |
⊢ ( 𝑥 𝐴 𝑦 ↔ ( 𝑦 ∈ ran 𝐴 ∧ 𝑥 𝐴 𝑦 ) ) |
6 |
5
|
mobii |
⊢ ( ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ∃* 𝑦 ( 𝑦 ∈ ran 𝐴 ∧ 𝑥 𝐴 𝑦 ) ) |
7 |
|
df-rmo |
⊢ ( ∃* 𝑦 ∈ ran 𝐴 𝑥 𝐴 𝑦 ↔ ∃* 𝑦 ( 𝑦 ∈ ran 𝐴 ∧ 𝑥 𝐴 𝑦 ) ) |
8 |
6 7
|
bitr4i |
⊢ ( ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ∃* 𝑦 ∈ ran 𝐴 𝑥 𝐴 𝑦 ) |
9 |
8
|
ralbii |
⊢ ( ∀ 𝑥 ∈ dom 𝐴 ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ∀ 𝑥 ∈ dom 𝐴 ∃* 𝑦 ∈ ran 𝐴 𝑥 𝐴 𝑦 ) |
10 |
9
|
anbi2i |
⊢ ( ( Rel 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∃* 𝑦 𝑥 𝐴 𝑦 ) ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∃* 𝑦 ∈ ran 𝐴 𝑥 𝐴 𝑦 ) ) |
11 |
1 10
|
bitri |
⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∃* 𝑦 ∈ ran 𝐴 𝑥 𝐴 𝑦 ) ) |