Step |
Hyp |
Ref |
Expression |
1 |
|
snidb |
⊢ ( 𝐴 ∈ V ↔ 𝐴 ∈ { 𝐴 } ) |
2 |
|
fvres |
⊢ ( 𝐴 ∈ { 𝐴 } → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
3 |
1 2
|
sylbi |
⊢ ( 𝐴 ∈ V → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
4 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ∅ ) |
5 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
6 |
4 5
|
eqtr4d |
⊢ ( ¬ 𝐴 ∈ V → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
7 |
3 6
|
pm2.61i |
⊢ ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) |
8 |
|
funfv |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ∪ ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) ) |
9 |
|
resima |
⊢ ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) = ( 𝐹 “ { 𝐴 } ) |
10 |
|
dif0 |
⊢ ( ( 𝐹 “ { 𝐴 } ) ∖ ∅ ) = ( 𝐹 “ { 𝐴 } ) |
11 |
9 10
|
eqtr4i |
⊢ ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) = ( ( 𝐹 “ { 𝐴 } ) ∖ ∅ ) |
12 |
|
df-fun |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) ↔ ( Rel ( 𝐹 ↾ { 𝐴 } ) ∧ ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ⊆ I ) ) |
13 |
12
|
simprbi |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ⊆ I ) |
14 |
|
ssdif0 |
⊢ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ⊆ I ↔ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) = ∅ ) |
15 |
13 14
|
sylib |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) = ∅ ) |
16 |
15
|
unieqd |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) = ∪ ∅ ) |
17 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
18 |
16 17
|
eqtrdi |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) = ∅ ) |
19 |
18
|
unieqd |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) = ∪ ∅ ) |
20 |
19 17
|
eqtrdi |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) = ∅ ) |
21 |
20
|
difeq2d |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ( ( 𝐹 “ { 𝐴 } ) ∖ ∅ ) ) |
22 |
11 21
|
eqtr4id |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) = ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
23 |
22
|
unieqd |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) = ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
24 |
8 23
|
eqtrd |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
25 |
7 24
|
eqtr3id |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 ‘ 𝐴 ) = ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
26 |
|
nfunsn |
⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
27 |
|
relres |
⊢ Rel ( 𝐹 ↾ { 𝐴 } ) |
28 |
|
dffun3 |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) ↔ ( Rel ( 𝐹 ↾ { 𝐴 } ) ∧ ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ) ) |
29 |
27 28
|
mpbiran |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) ↔ ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ) |
30 |
|
iman |
⊢ ( ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ↔ ¬ ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
31 |
30
|
albii |
⊢ ( ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ↔ ∀ 𝑧 ¬ ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
32 |
|
alnex |
⊢ ( ∀ 𝑧 ¬ ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ↔ ¬ ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
33 |
31 32
|
bitri |
⊢ ( ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ↔ ¬ ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
34 |
33
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ↔ ∃ 𝑦 ¬ ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
35 |
|
exnal |
⊢ ( ∃ 𝑦 ¬ ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ↔ ¬ ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
36 |
34 35
|
bitri |
⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ↔ ¬ ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
37 |
36
|
albii |
⊢ ( ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ↔ ∀ 𝑥 ¬ ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
38 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ↔ ¬ ∃ 𝑥 ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
39 |
29 37 38
|
3bitrri |
⊢ ( ¬ ∃ 𝑥 ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ↔ Fun ( 𝐹 ↾ { 𝐴 } ) ) |
40 |
39
|
con1bii |
⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ↔ ∃ 𝑥 ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
41 |
|
sp |
⊢ ( ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
42 |
41
|
eximi |
⊢ ( ∃ 𝑥 ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ∃ 𝑥 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
43 |
40 42
|
sylbi |
⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ∃ 𝑥 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
44 |
|
snssi |
⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → { 𝐴 } ⊆ dom ( 𝐹 ↾ { 𝐴 } ) ) |
45 |
|
residm |
⊢ ( ( 𝐹 ↾ { 𝐴 } ) ↾ { 𝐴 } ) = ( 𝐹 ↾ { 𝐴 } ) |
46 |
45
|
dmeqi |
⊢ dom ( ( 𝐹 ↾ { 𝐴 } ) ↾ { 𝐴 } ) = dom ( 𝐹 ↾ { 𝐴 } ) |
47 |
|
ssdmres |
⊢ ( { 𝐴 } ⊆ dom ( 𝐹 ↾ { 𝐴 } ) ↔ dom ( ( 𝐹 ↾ { 𝐴 } ) ↾ { 𝐴 } ) = { 𝐴 } ) |
48 |
47
|
biimpi |
⊢ ( { 𝐴 } ⊆ dom ( 𝐹 ↾ { 𝐴 } ) → dom ( ( 𝐹 ↾ { 𝐴 } ) ↾ { 𝐴 } ) = { 𝐴 } ) |
49 |
46 48
|
eqtr3id |
⊢ ( { 𝐴 } ⊆ dom ( 𝐹 ↾ { 𝐴 } ) → dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } ) |
50 |
44 49
|
syl |
⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } ) |
51 |
|
vex |
⊢ 𝑥 ∈ V |
52 |
|
vex |
⊢ 𝑧 ∈ V |
53 |
51 52
|
breldm |
⊢ ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) |
54 |
|
eleq2 |
⊢ ( dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } → ( 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ↔ 𝑥 ∈ { 𝐴 } ) ) |
55 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) |
56 |
54 55
|
bitrdi |
⊢ ( dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } → ( 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ↔ 𝑥 = 𝐴 ) ) |
57 |
56
|
biimpa |
⊢ ( ( dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } ∧ 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) → 𝑥 = 𝐴 ) |
58 |
50 53 57
|
syl2an |
⊢ ( ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) → 𝑥 = 𝐴 ) |
59 |
58
|
breq1d |
⊢ ( ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ↔ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
60 |
59
|
biimpd |
⊢ ( ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
61 |
60
|
ex |
⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) ) |
62 |
61
|
pm2.43d |
⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
63 |
62
|
anim1d |
⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) ) |
64 |
63
|
eximdv |
⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ∃ 𝑧 ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) ) |
65 |
64
|
exlimdv |
⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ∃ 𝑥 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ∃ 𝑧 ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) ) |
66 |
43 65
|
mpan9 |
⊢ ( ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) → ∃ 𝑧 ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
67 |
9
|
eleq2i |
⊢ ( 𝑦 ∈ ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) ↔ 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) ) |
68 |
|
elimasni |
⊢ ( 𝑦 ∈ ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) → 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) |
69 |
67 68
|
sylbir |
⊢ ( 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) → 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) |
70 |
|
vex |
⊢ 𝑦 ∈ V |
71 |
70 52
|
uniop |
⊢ ∪ 〈 𝑦 , 𝑧 〉 = { 𝑦 , 𝑧 } |
72 |
|
opex |
⊢ 〈 𝑦 , 𝑧 〉 ∈ V |
73 |
72
|
unisn |
⊢ ∪ { 〈 𝑦 , 𝑧 〉 } = 〈 𝑦 , 𝑧 〉 |
74 |
27
|
brrelex1i |
⊢ ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝐴 ∈ V ) |
75 |
|
brcnvg |
⊢ ( ( 𝑦 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ↔ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) ) |
76 |
70 74 75
|
sylancr |
⊢ ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ↔ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) ) |
77 |
76
|
biimpar |
⊢ ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ) |
78 |
74
|
adantl |
⊢ ( ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) → 𝐴 ∈ V ) |
79 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ↔ 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ) ) |
80 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ↔ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
81 |
79 80
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ↔ ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) ) |
82 |
81
|
rspcev |
⊢ ( ( 𝐴 ∈ V ∧ ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) → ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
83 |
78 82
|
mpancom |
⊢ ( ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) → ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
84 |
83
|
ancoms |
⊢ ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ) → ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
85 |
77 84
|
syldan |
⊢ ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
86 |
85
|
anim1i |
⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) ∧ ¬ 𝑧 = 𝑦 ) → ( ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ∧ ¬ 𝑧 = 𝑦 ) ) |
87 |
86
|
an32s |
⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → ( ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ∧ ¬ 𝑧 = 𝑦 ) ) |
88 |
|
eldif |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ↔ ( 〈 𝑦 , 𝑧 〉 ∈ ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∧ ¬ 〈 𝑦 , 𝑧 〉 ∈ I ) ) |
89 |
|
rexv |
⊢ ( ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ↔ ∃ 𝑥 ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
90 |
70 52
|
brco |
⊢ ( 𝑦 ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) 𝑧 ↔ ∃ 𝑥 ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
91 |
|
df-br |
⊢ ( 𝑦 ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ) |
92 |
89 90 91
|
3bitr2ri |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ↔ ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
93 |
52
|
ideq |
⊢ ( 𝑦 I 𝑧 ↔ 𝑦 = 𝑧 ) |
94 |
|
df-br |
⊢ ( 𝑦 I 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ I ) |
95 |
|
equcom |
⊢ ( 𝑦 = 𝑧 ↔ 𝑧 = 𝑦 ) |
96 |
93 94 95
|
3bitr3i |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ I ↔ 𝑧 = 𝑦 ) |
97 |
96
|
notbii |
⊢ ( ¬ 〈 𝑦 , 𝑧 〉 ∈ I ↔ ¬ 𝑧 = 𝑦 ) |
98 |
92 97
|
anbi12i |
⊢ ( ( 〈 𝑦 , 𝑧 〉 ∈ ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∧ ¬ 〈 𝑦 , 𝑧 〉 ∈ I ) ↔ ( ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ∧ ¬ 𝑧 = 𝑦 ) ) |
99 |
88 98
|
bitr2i |
⊢ ( ( ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ∧ ¬ 𝑧 = 𝑦 ) ↔ 〈 𝑦 , 𝑧 〉 ∈ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
100 |
87 99
|
sylib |
⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → 〈 𝑦 , 𝑧 〉 ∈ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
101 |
|
snssi |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) → { 〈 𝑦 , 𝑧 〉 } ⊆ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
102 |
|
uniss |
⊢ ( { 〈 𝑦 , 𝑧 〉 } ⊆ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) → ∪ { 〈 𝑦 , 𝑧 〉 } ⊆ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
103 |
100 101 102
|
3syl |
⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → ∪ { 〈 𝑦 , 𝑧 〉 } ⊆ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
104 |
73 103
|
eqsstrrid |
⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → 〈 𝑦 , 𝑧 〉 ⊆ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
105 |
104
|
unissd |
⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → ∪ 〈 𝑦 , 𝑧 〉 ⊆ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
106 |
71 105
|
eqsstrrid |
⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → { 𝑦 , 𝑧 } ⊆ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
107 |
70 52
|
prss |
⊢ ( ( 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ∧ 𝑧 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ↔ { 𝑦 , 𝑧 } ⊆ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
108 |
106 107
|
sylibr |
⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → ( 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ∧ 𝑧 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
109 |
108
|
simpld |
⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
110 |
109
|
ex |
⊢ ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 → 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
111 |
69 110
|
syl5 |
⊢ ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ( 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) → 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
112 |
111
|
exlimiv |
⊢ ( ∃ 𝑧 ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ( 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) → 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
113 |
66 112
|
syl |
⊢ ( ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) → 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
114 |
113
|
ssrdv |
⊢ ( ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐹 “ { 𝐴 } ) ⊆ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
115 |
|
ssdif0 |
⊢ ( ( 𝐹 “ { 𝐴 } ) ⊆ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ↔ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ ) |
116 |
114 115
|
sylib |
⊢ ( ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) → ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ ) |
117 |
116
|
ex |
⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ ) ) |
118 |
|
ndmima |
⊢ ( ¬ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) = ∅ ) |
119 |
9 118
|
eqtr3id |
⊢ ( ¬ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 “ { 𝐴 } ) = ∅ ) |
120 |
119
|
difeq1d |
⊢ ( ¬ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ( ∅ ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
121 |
|
0dif |
⊢ ( ∅ ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ |
122 |
120 121
|
eqtrdi |
⊢ ( ¬ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ ) |
123 |
117 122
|
pm2.61d1 |
⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ ) |
124 |
123
|
unieqd |
⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∪ ∅ ) |
125 |
124 17
|
eqtrdi |
⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ ) |
126 |
26 125
|
eqtr4d |
⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 ‘ 𝐴 ) = ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
127 |
25 126
|
pm2.61i |
⊢ ( 𝐹 ‘ 𝐴 ) = ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |