| Step |
Hyp |
Ref |
Expression |
| 1 |
|
snidb |
⊢ ( 𝐴 ∈ V ↔ 𝐴 ∈ { 𝐴 } ) |
| 2 |
|
fvres |
⊢ ( 𝐴 ∈ { 𝐴 } → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 3 |
1 2
|
sylbi |
⊢ ( 𝐴 ∈ V → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 4 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ∅ ) |
| 5 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 6 |
4 5
|
eqtr4d |
⊢ ( ¬ 𝐴 ∈ V → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 7 |
3 6
|
pm2.61i |
⊢ ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) |
| 8 |
|
funfv |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ∪ ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) ) |
| 9 |
|
resima |
⊢ ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) = ( 𝐹 “ { 𝐴 } ) |
| 10 |
|
dif0 |
⊢ ( ( 𝐹 “ { 𝐴 } ) ∖ ∅ ) = ( 𝐹 “ { 𝐴 } ) |
| 11 |
9 10
|
eqtr4i |
⊢ ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) = ( ( 𝐹 “ { 𝐴 } ) ∖ ∅ ) |
| 12 |
|
df-fun |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) ↔ ( Rel ( 𝐹 ↾ { 𝐴 } ) ∧ ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ⊆ I ) ) |
| 13 |
12
|
simprbi |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ⊆ I ) |
| 14 |
|
ssdif0 |
⊢ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ⊆ I ↔ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) = ∅ ) |
| 15 |
13 14
|
sylib |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) = ∅ ) |
| 16 |
15
|
unieqd |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) = ∪ ∅ ) |
| 17 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 18 |
16 17
|
eqtrdi |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) = ∅ ) |
| 19 |
18
|
unieqd |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) = ∪ ∅ ) |
| 20 |
19 17
|
eqtrdi |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) = ∅ ) |
| 21 |
20
|
difeq2d |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ( ( 𝐹 “ { 𝐴 } ) ∖ ∅ ) ) |
| 22 |
11 21
|
eqtr4id |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) = ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 23 |
22
|
unieqd |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) = ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 24 |
8 23
|
eqtrd |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 25 |
7 24
|
eqtr3id |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 ‘ 𝐴 ) = ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 26 |
|
nfunsn |
⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 27 |
|
relres |
⊢ Rel ( 𝐹 ↾ { 𝐴 } ) |
| 28 |
|
dffun3 |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) ↔ ( Rel ( 𝐹 ↾ { 𝐴 } ) ∧ ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ) ) |
| 29 |
27 28
|
mpbiran |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) ↔ ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ) |
| 30 |
|
iman |
⊢ ( ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ↔ ¬ ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 31 |
30
|
albii |
⊢ ( ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ↔ ∀ 𝑧 ¬ ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 32 |
|
alnex |
⊢ ( ∀ 𝑧 ¬ ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ↔ ¬ ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 33 |
31 32
|
bitri |
⊢ ( ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ↔ ¬ ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 34 |
33
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ↔ ∃ 𝑦 ¬ ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 35 |
|
exnal |
⊢ ( ∃ 𝑦 ¬ ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ↔ ¬ ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 36 |
34 35
|
bitri |
⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ↔ ¬ ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 37 |
36
|
albii |
⊢ ( ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑧 = 𝑦 ) ↔ ∀ 𝑥 ¬ ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 38 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ↔ ¬ ∃ 𝑥 ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 39 |
29 37 38
|
3bitrri |
⊢ ( ¬ ∃ 𝑥 ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ↔ Fun ( 𝐹 ↾ { 𝐴 } ) ) |
| 40 |
39
|
con1bii |
⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ↔ ∃ 𝑥 ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 41 |
|
sp |
⊢ ( ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 42 |
41
|
eximi |
⊢ ( ∃ 𝑥 ∀ 𝑦 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ∃ 𝑥 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 43 |
40 42
|
sylbi |
⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ∃ 𝑥 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 44 |
|
snssi |
⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → { 𝐴 } ⊆ dom ( 𝐹 ↾ { 𝐴 } ) ) |
| 45 |
|
residm |
⊢ ( ( 𝐹 ↾ { 𝐴 } ) ↾ { 𝐴 } ) = ( 𝐹 ↾ { 𝐴 } ) |
| 46 |
45
|
dmeqi |
⊢ dom ( ( 𝐹 ↾ { 𝐴 } ) ↾ { 𝐴 } ) = dom ( 𝐹 ↾ { 𝐴 } ) |
| 47 |
|
ssdmres |
⊢ ( { 𝐴 } ⊆ dom ( 𝐹 ↾ { 𝐴 } ) ↔ dom ( ( 𝐹 ↾ { 𝐴 } ) ↾ { 𝐴 } ) = { 𝐴 } ) |
| 48 |
47
|
biimpi |
⊢ ( { 𝐴 } ⊆ dom ( 𝐹 ↾ { 𝐴 } ) → dom ( ( 𝐹 ↾ { 𝐴 } ) ↾ { 𝐴 } ) = { 𝐴 } ) |
| 49 |
46 48
|
eqtr3id |
⊢ ( { 𝐴 } ⊆ dom ( 𝐹 ↾ { 𝐴 } ) → dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } ) |
| 50 |
44 49
|
syl |
⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } ) |
| 51 |
|
vex |
⊢ 𝑥 ∈ V |
| 52 |
|
vex |
⊢ 𝑧 ∈ V |
| 53 |
51 52
|
breldm |
⊢ ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) |
| 54 |
|
eleq2 |
⊢ ( dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } → ( 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ↔ 𝑥 ∈ { 𝐴 } ) ) |
| 55 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) |
| 56 |
54 55
|
bitrdi |
⊢ ( dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } → ( 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ↔ 𝑥 = 𝐴 ) ) |
| 57 |
56
|
biimpa |
⊢ ( ( dom ( 𝐹 ↾ { 𝐴 } ) = { 𝐴 } ∧ 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) → 𝑥 = 𝐴 ) |
| 58 |
50 53 57
|
syl2an |
⊢ ( ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) → 𝑥 = 𝐴 ) |
| 59 |
58
|
breq1d |
⊢ ( ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ↔ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
| 60 |
59
|
biimpd |
⊢ ( ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
| 61 |
60
|
ex |
⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) ) |
| 62 |
61
|
pm2.43d |
⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
| 63 |
62
|
anim1d |
⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) ) |
| 64 |
63
|
eximdv |
⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ∃ 𝑧 ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) ) |
| 65 |
64
|
exlimdv |
⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ∃ 𝑥 ∃ 𝑧 ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ∃ 𝑧 ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) ) |
| 66 |
43 65
|
mpan9 |
⊢ ( ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) → ∃ 𝑧 ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ) |
| 67 |
9
|
eleq2i |
⊢ ( 𝑦 ∈ ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) ↔ 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) ) |
| 68 |
|
elimasni |
⊢ ( 𝑦 ∈ ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) → 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) |
| 69 |
67 68
|
sylbir |
⊢ ( 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) → 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) |
| 70 |
|
vex |
⊢ 𝑦 ∈ V |
| 71 |
70 52
|
uniop |
⊢ ∪ 〈 𝑦 , 𝑧 〉 = { 𝑦 , 𝑧 } |
| 72 |
|
opex |
⊢ 〈 𝑦 , 𝑧 〉 ∈ V |
| 73 |
72
|
unisn |
⊢ ∪ { 〈 𝑦 , 𝑧 〉 } = 〈 𝑦 , 𝑧 〉 |
| 74 |
27
|
brrelex1i |
⊢ ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → 𝐴 ∈ V ) |
| 75 |
|
brcnvg |
⊢ ( ( 𝑦 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ↔ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) ) |
| 76 |
70 74 75
|
sylancr |
⊢ ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 → ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ↔ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) ) |
| 77 |
76
|
biimpar |
⊢ ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ) |
| 78 |
74
|
adantl |
⊢ ( ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) → 𝐴 ∈ V ) |
| 79 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ↔ 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ) ) |
| 80 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ↔ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
| 81 |
79 80
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ↔ ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) ) |
| 82 |
81
|
rspcev |
⊢ ( ( 𝐴 ∈ V ∧ ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) → ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
| 83 |
78 82
|
mpancom |
⊢ ( ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) → ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
| 84 |
83
|
ancoms |
⊢ ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝐴 ) → ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
| 85 |
77 84
|
syldan |
⊢ ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
| 86 |
85
|
anim1i |
⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) ∧ ¬ 𝑧 = 𝑦 ) → ( ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ∧ ¬ 𝑧 = 𝑦 ) ) |
| 87 |
86
|
an32s |
⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → ( ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ∧ ¬ 𝑧 = 𝑦 ) ) |
| 88 |
|
eldif |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ↔ ( 〈 𝑦 , 𝑧 〉 ∈ ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∧ ¬ 〈 𝑦 , 𝑧 〉 ∈ I ) ) |
| 89 |
|
rexv |
⊢ ( ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ↔ ∃ 𝑥 ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
| 90 |
70 52
|
brco |
⊢ ( 𝑦 ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) 𝑧 ↔ ∃ 𝑥 ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
| 91 |
|
df-br |
⊢ ( 𝑦 ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ) |
| 92 |
89 90 91
|
3bitr2ri |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ↔ ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ) |
| 93 |
52
|
ideq |
⊢ ( 𝑦 I 𝑧 ↔ 𝑦 = 𝑧 ) |
| 94 |
|
df-br |
⊢ ( 𝑦 I 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ I ) |
| 95 |
|
equcom |
⊢ ( 𝑦 = 𝑧 ↔ 𝑧 = 𝑦 ) |
| 96 |
93 94 95
|
3bitr3i |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ I ↔ 𝑧 = 𝑦 ) |
| 97 |
96
|
notbii |
⊢ ( ¬ 〈 𝑦 , 𝑧 〉 ∈ I ↔ ¬ 𝑧 = 𝑦 ) |
| 98 |
92 97
|
anbi12i |
⊢ ( ( 〈 𝑦 , 𝑧 〉 ∈ ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∧ ¬ 〈 𝑦 , 𝑧 〉 ∈ I ) ↔ ( ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ∧ ¬ 𝑧 = 𝑦 ) ) |
| 99 |
88 98
|
bitr2i |
⊢ ( ( ∃ 𝑥 ∈ V ( 𝑦 ◡ ( 𝐹 ↾ { 𝐴 } ) 𝑥 ∧ 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ) ∧ ¬ 𝑧 = 𝑦 ) ↔ 〈 𝑦 , 𝑧 〉 ∈ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| 100 |
87 99
|
sylib |
⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → 〈 𝑦 , 𝑧 〉 ∈ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| 101 |
|
snssi |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) → { 〈 𝑦 , 𝑧 〉 } ⊆ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| 102 |
|
uniss |
⊢ ( { 〈 𝑦 , 𝑧 〉 } ⊆ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) → ∪ { 〈 𝑦 , 𝑧 〉 } ⊆ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| 103 |
100 101 102
|
3syl |
⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → ∪ { 〈 𝑦 , 𝑧 〉 } ⊆ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| 104 |
73 103
|
eqsstrrid |
⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → 〈 𝑦 , 𝑧 〉 ⊆ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| 105 |
104
|
unissd |
⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → ∪ 〈 𝑦 , 𝑧 〉 ⊆ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| 106 |
71 105
|
eqsstrrid |
⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → { 𝑦 , 𝑧 } ⊆ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| 107 |
70 52
|
prss |
⊢ ( ( 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ∧ 𝑧 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ↔ { 𝑦 , 𝑧 } ⊆ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| 108 |
106 107
|
sylibr |
⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → ( 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ∧ 𝑧 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 109 |
108
|
simpld |
⊢ ( ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) ∧ 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) → 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| 110 |
109
|
ex |
⊢ ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑦 → 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 111 |
69 110
|
syl5 |
⊢ ( ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ( 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) → 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 112 |
111
|
exlimiv |
⊢ ( ∃ 𝑧 ( 𝐴 ( 𝐹 ↾ { 𝐴 } ) 𝑧 ∧ ¬ 𝑧 = 𝑦 ) → ( 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) → 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 113 |
66 112
|
syl |
⊢ ( ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) → 𝑦 ∈ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 114 |
113
|
ssrdv |
⊢ ( ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐹 “ { 𝐴 } ) ⊆ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |
| 115 |
|
ssdif0 |
⊢ ( ( 𝐹 “ { 𝐴 } ) ⊆ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ↔ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ ) |
| 116 |
114 115
|
sylib |
⊢ ( ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) → ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ ) |
| 117 |
116
|
ex |
⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ ) ) |
| 118 |
|
ndmima |
⊢ ( ¬ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 ↾ { 𝐴 } ) “ { 𝐴 } ) = ∅ ) |
| 119 |
9 118
|
eqtr3id |
⊢ ( ¬ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 “ { 𝐴 } ) = ∅ ) |
| 120 |
119
|
difeq1d |
⊢ ( ¬ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ( ∅ ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 121 |
|
0dif |
⊢ ( ∅ ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ |
| 122 |
120 121
|
eqtrdi |
⊢ ( ¬ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ ) |
| 123 |
117 122
|
pm2.61d1 |
⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ ) |
| 124 |
123
|
unieqd |
⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∪ ∅ ) |
| 125 |
124 17
|
eqtrdi |
⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) = ∅ ) |
| 126 |
26 125
|
eqtr4d |
⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 ‘ 𝐴 ) = ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) ) |
| 127 |
25 126
|
pm2.61i |
⊢ ( 𝐹 ‘ 𝐴 ) = ∪ ( ( 𝐹 “ { 𝐴 } ) ∖ ∪ ∪ ( ( ( 𝐹 ↾ { 𝐴 } ) ∘ ◡ ( 𝐹 ↾ { 𝐴 } ) ) ∖ I ) ) |