Step |
Hyp |
Ref |
Expression |
1 |
|
df-fv |
⊢ ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) |
2 |
|
elimasng |
⊢ ( ( 𝐴 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ) ) |
3 |
|
df-br |
⊢ ( 𝐴 𝐹 𝑥 ↔ 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ) |
4 |
2 3
|
bitr4di |
⊢ ( ( 𝐴 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ 𝐴 𝐹 𝑥 ) ) |
5 |
4
|
elvd |
⊢ ( 𝐴 ∈ V → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ 𝐴 𝐹 𝑥 ) ) |
6 |
5
|
iotabidv |
⊢ ( 𝐴 ∈ V → ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) ) |
7 |
1 6
|
eqtr4id |
⊢ ( 𝐴 ∈ V → ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) ) |
8 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
9 |
|
snprc |
⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) |
10 |
9
|
biimpi |
⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
11 |
10
|
imaeq2d |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐹 “ { 𝐴 } ) = ( 𝐹 “ ∅ ) ) |
12 |
|
ima0 |
⊢ ( 𝐹 “ ∅ ) = ∅ |
13 |
11 12
|
eqtrdi |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐹 “ { 𝐴 } ) = ∅ ) |
14 |
13
|
eleq2d |
⊢ ( ¬ 𝐴 ∈ V → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ 𝑥 ∈ ∅ ) ) |
15 |
14
|
iotabidv |
⊢ ( ¬ 𝐴 ∈ V → ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) = ( ℩ 𝑥 𝑥 ∈ ∅ ) ) |
16 |
|
noel |
⊢ ¬ 𝑥 ∈ ∅ |
17 |
16
|
nex |
⊢ ¬ ∃ 𝑥 𝑥 ∈ ∅ |
18 |
|
euex |
⊢ ( ∃! 𝑥 𝑥 ∈ ∅ → ∃ 𝑥 𝑥 ∈ ∅ ) |
19 |
17 18
|
mto |
⊢ ¬ ∃! 𝑥 𝑥 ∈ ∅ |
20 |
|
iotanul |
⊢ ( ¬ ∃! 𝑥 𝑥 ∈ ∅ → ( ℩ 𝑥 𝑥 ∈ ∅ ) = ∅ ) |
21 |
19 20
|
ax-mp |
⊢ ( ℩ 𝑥 𝑥 ∈ ∅ ) = ∅ |
22 |
15 21
|
eqtrdi |
⊢ ( ¬ 𝐴 ∈ V → ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) = ∅ ) |
23 |
8 22
|
eqtr4d |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) ) |
24 |
7 23
|
pm2.61i |
⊢ ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) |