| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gcdcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ0 ) |
| 2 |
1
|
nn0ge0d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 0 ≤ ( 𝑀 gcd 𝑁 ) ) |
| 3 |
|
gcddvds |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 4 |
|
3anass |
⊢ ( ( 𝑒 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ↔ ( 𝑒 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) ) |
| 5 |
4
|
biancomi |
⊢ ( ( 𝑒 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑒 ∈ ℤ ) ) |
| 6 |
|
dvdsgcd |
⊢ ( ( 𝑒 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) |
| 7 |
5 6
|
sylbir |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑒 ∈ ℤ ) → ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) |
| 8 |
7
|
ralrimiva |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) |
| 9 |
2 3 8
|
3jca |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ≤ ( 𝑀 gcd 𝑁 ) ∧ ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) ) |
| 10 |
9
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐷 = ( 𝑀 gcd 𝑁 ) ) → ( 0 ≤ ( 𝑀 gcd 𝑁 ) ∧ ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) ) |
| 11 |
|
breq2 |
⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( 0 ≤ 𝐷 ↔ 0 ≤ ( 𝑀 gcd 𝑁 ) ) ) |
| 12 |
|
breq1 |
⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( 𝐷 ∥ 𝑀 ↔ ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ) ) |
| 13 |
|
breq1 |
⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( 𝐷 ∥ 𝑁 ↔ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 14 |
12 13
|
anbi12d |
⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ↔ ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) ) |
| 15 |
|
breq2 |
⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( 𝑒 ∥ 𝐷 ↔ 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) |
| 16 |
15
|
imbi2d |
⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ↔ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) ) |
| 17 |
16
|
ralbidv |
⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ↔ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) ) |
| 18 |
11 14 17
|
3anbi123d |
⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ↔ ( 0 ≤ ( 𝑀 gcd 𝑁 ) ∧ ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) ) ) |
| 19 |
18
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐷 = ( 𝑀 gcd 𝑁 ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ↔ ( 0 ≤ ( 𝑀 gcd 𝑁 ) ∧ ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) ) ) |
| 20 |
10 19
|
mpbird |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐷 = ( 𝑀 gcd 𝑁 ) ) → ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) |
| 21 |
|
gcdval |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) = if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) ) |
| 22 |
21
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) → ( 𝑀 gcd 𝑁 ) = if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) ) |
| 23 |
|
iftrue |
⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = 0 ) |
| 24 |
23
|
adantr |
⊢ ( ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = 0 ) |
| 25 |
|
breq2 |
⊢ ( 𝑀 = 0 → ( 𝐷 ∥ 𝑀 ↔ 𝐷 ∥ 0 ) ) |
| 26 |
|
breq2 |
⊢ ( 𝑁 = 0 → ( 𝐷 ∥ 𝑁 ↔ 𝐷 ∥ 0 ) ) |
| 27 |
25 26
|
bi2anan9 |
⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ↔ ( 𝐷 ∥ 0 ∧ 𝐷 ∥ 0 ) ) ) |
| 28 |
|
breq2 |
⊢ ( 𝑀 = 0 → ( 𝑒 ∥ 𝑀 ↔ 𝑒 ∥ 0 ) ) |
| 29 |
|
breq2 |
⊢ ( 𝑁 = 0 → ( 𝑒 ∥ 𝑁 ↔ 𝑒 ∥ 0 ) ) |
| 30 |
28 29
|
bi2anan9 |
⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) ↔ ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) ) ) |
| 31 |
30
|
imbi1d |
⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ↔ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ) ) |
| 32 |
31
|
ralbidv |
⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ↔ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ) ) |
| 33 |
27 32
|
3anbi23d |
⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ↔ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 0 ∧ 𝐷 ∥ 0 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ) ) ) |
| 34 |
|
dvdszrcl |
⊢ ( 𝐷 ∥ 0 → ( 𝐷 ∈ ℤ ∧ 0 ∈ ℤ ) ) |
| 35 |
|
dvds0 |
⊢ ( 𝑒 ∈ ℤ → 𝑒 ∥ 0 ) |
| 36 |
35 35
|
jca |
⊢ ( 𝑒 ∈ ℤ → ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) ) |
| 37 |
36
|
adantl |
⊢ ( ( ( 𝐷 ∈ ℤ ∧ 0 ≤ 𝐷 ) ∧ 𝑒 ∈ ℤ ) → ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) ) |
| 38 |
|
pm5.5 |
⊢ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → ( ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ↔ 𝑒 ∥ 𝐷 ) ) |
| 39 |
37 38
|
syl |
⊢ ( ( ( 𝐷 ∈ ℤ ∧ 0 ≤ 𝐷 ) ∧ 𝑒 ∈ ℤ ) → ( ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ↔ 𝑒 ∥ 𝐷 ) ) |
| 40 |
39
|
ralbidva |
⊢ ( ( 𝐷 ∈ ℤ ∧ 0 ≤ 𝐷 ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ↔ ∀ 𝑒 ∈ ℤ 𝑒 ∥ 𝐷 ) ) |
| 41 |
|
0z |
⊢ 0 ∈ ℤ |
| 42 |
|
breq1 |
⊢ ( 𝑒 = 0 → ( 𝑒 ∥ 𝐷 ↔ 0 ∥ 𝐷 ) ) |
| 43 |
42
|
rspcv |
⊢ ( 0 ∈ ℤ → ( ∀ 𝑒 ∈ ℤ 𝑒 ∥ 𝐷 → 0 ∥ 𝐷 ) ) |
| 44 |
41 43
|
ax-mp |
⊢ ( ∀ 𝑒 ∈ ℤ 𝑒 ∥ 𝐷 → 0 ∥ 𝐷 ) |
| 45 |
|
0dvds |
⊢ ( 𝐷 ∈ ℤ → ( 0 ∥ 𝐷 ↔ 𝐷 = 0 ) ) |
| 46 |
45
|
biimpd |
⊢ ( 𝐷 ∈ ℤ → ( 0 ∥ 𝐷 → 𝐷 = 0 ) ) |
| 47 |
|
eqcom |
⊢ ( 0 = 𝐷 ↔ 𝐷 = 0 ) |
| 48 |
46 47
|
imbitrrdi |
⊢ ( 𝐷 ∈ ℤ → ( 0 ∥ 𝐷 → 0 = 𝐷 ) ) |
| 49 |
44 48
|
syl5 |
⊢ ( 𝐷 ∈ ℤ → ( ∀ 𝑒 ∈ ℤ 𝑒 ∥ 𝐷 → 0 = 𝐷 ) ) |
| 50 |
49
|
adantr |
⊢ ( ( 𝐷 ∈ ℤ ∧ 0 ≤ 𝐷 ) → ( ∀ 𝑒 ∈ ℤ 𝑒 ∥ 𝐷 → 0 = 𝐷 ) ) |
| 51 |
40 50
|
sylbid |
⊢ ( ( 𝐷 ∈ ℤ ∧ 0 ≤ 𝐷 ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) → 0 = 𝐷 ) ) |
| 52 |
51
|
ex |
⊢ ( 𝐷 ∈ ℤ → ( 0 ≤ 𝐷 → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) → 0 = 𝐷 ) ) ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝐷 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 0 ≤ 𝐷 → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) → 0 = 𝐷 ) ) ) |
| 54 |
34 53
|
syl |
⊢ ( 𝐷 ∥ 0 → ( 0 ≤ 𝐷 → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) → 0 = 𝐷 ) ) ) |
| 55 |
54
|
adantr |
⊢ ( ( 𝐷 ∥ 0 ∧ 𝐷 ∥ 0 ) → ( 0 ≤ 𝐷 → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) → 0 = 𝐷 ) ) ) |
| 56 |
55
|
3imp21 |
⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 0 ∧ 𝐷 ∥ 0 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ) → 0 = 𝐷 ) |
| 57 |
33 56
|
biimtrdi |
⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) → 0 = 𝐷 ) ) |
| 58 |
57
|
adantld |
⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) → 0 = 𝐷 ) ) |
| 59 |
58
|
imp |
⊢ ( ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → 0 = 𝐷 ) |
| 60 |
24 59
|
eqtrd |
⊢ ( ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = 𝐷 ) |
| 61 |
|
iffalse |
⊢ ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) |
| 62 |
61
|
adantr |
⊢ ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) |
| 63 |
|
ltso |
⊢ < Or ℝ |
| 64 |
63
|
a1i |
⊢ ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → < Or ℝ ) |
| 65 |
|
dvdszrcl |
⊢ ( 𝐷 ∥ 𝑀 → ( 𝐷 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) |
| 66 |
65
|
simpld |
⊢ ( 𝐷 ∥ 𝑀 → 𝐷 ∈ ℤ ) |
| 67 |
66
|
zred |
⊢ ( 𝐷 ∥ 𝑀 → 𝐷 ∈ ℝ ) |
| 68 |
67
|
adantr |
⊢ ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) → 𝐷 ∈ ℝ ) |
| 69 |
68
|
3ad2ant2 |
⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) → 𝐷 ∈ ℝ ) |
| 70 |
69
|
ad2antll |
⊢ ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → 𝐷 ∈ ℝ ) |
| 71 |
|
breq1 |
⊢ ( 𝑛 = 𝑦 → ( 𝑛 ∥ 𝑀 ↔ 𝑦 ∥ 𝑀 ) ) |
| 72 |
|
breq1 |
⊢ ( 𝑛 = 𝑦 → ( 𝑛 ∥ 𝑁 ↔ 𝑦 ∥ 𝑁 ) ) |
| 73 |
71 72
|
anbi12d |
⊢ ( 𝑛 = 𝑦 → ( ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) ↔ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ) |
| 74 |
73
|
elrab |
⊢ ( 𝑦 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } ↔ ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ) |
| 75 |
|
breq1 |
⊢ ( 𝑒 = 𝑦 → ( 𝑒 ∥ 𝑀 ↔ 𝑦 ∥ 𝑀 ) ) |
| 76 |
|
breq1 |
⊢ ( 𝑒 = 𝑦 → ( 𝑒 ∥ 𝑁 ↔ 𝑦 ∥ 𝑁 ) ) |
| 77 |
75 76
|
anbi12d |
⊢ ( 𝑒 = 𝑦 → ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) ↔ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ) |
| 78 |
|
breq1 |
⊢ ( 𝑒 = 𝑦 → ( 𝑒 ∥ 𝐷 ↔ 𝑦 ∥ 𝐷 ) ) |
| 79 |
77 78
|
imbi12d |
⊢ ( 𝑒 = 𝑦 → ( ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ↔ ( ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) → 𝑦 ∥ 𝐷 ) ) ) |
| 80 |
79
|
rspcv |
⊢ ( 𝑦 ∈ ℤ → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) → ( ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) → 𝑦 ∥ 𝐷 ) ) ) |
| 81 |
80
|
com23 |
⊢ ( 𝑦 ∈ ℤ → ( ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) → 𝑦 ∥ 𝐷 ) ) ) |
| 82 |
81
|
imp |
⊢ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) → 𝑦 ∥ 𝐷 ) ) |
| 83 |
82
|
ad2antrr |
⊢ ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) → 𝑦 ∥ 𝐷 ) ) |
| 84 |
|
elnn0z |
⊢ ( 𝐷 ∈ ℕ0 ↔ ( 𝐷 ∈ ℤ ∧ 0 ≤ 𝐷 ) ) |
| 85 |
84
|
simplbi2 |
⊢ ( 𝐷 ∈ ℤ → ( 0 ≤ 𝐷 → 𝐷 ∈ ℕ0 ) ) |
| 86 |
85
|
adantr |
⊢ ( ( 𝐷 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 0 ≤ 𝐷 → 𝐷 ∈ ℕ0 ) ) |
| 87 |
65 86
|
syl |
⊢ ( 𝐷 ∥ 𝑀 → ( 0 ≤ 𝐷 → 𝐷 ∈ ℕ0 ) ) |
| 88 |
87
|
adantr |
⊢ ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) → ( 0 ≤ 𝐷 → 𝐷 ∈ ℕ0 ) ) |
| 89 |
88
|
impcom |
⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ0 ) |
| 90 |
|
simp-4l |
⊢ ( ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ 𝐷 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) → 𝑦 ∈ ℤ ) |
| 91 |
|
elnn0 |
⊢ ( 𝐷 ∈ ℕ0 ↔ ( 𝐷 ∈ ℕ ∨ 𝐷 = 0 ) ) |
| 92 |
|
2a1 |
⊢ ( 𝐷 ∈ ℕ → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) ) |
| 93 |
|
breq1 |
⊢ ( 𝐷 = 0 → ( 𝐷 ∥ 𝑀 ↔ 0 ∥ 𝑀 ) ) |
| 94 |
|
breq1 |
⊢ ( 𝐷 = 0 → ( 𝐷 ∥ 𝑁 ↔ 0 ∥ 𝑁 ) ) |
| 95 |
93 94
|
anbi12d |
⊢ ( 𝐷 = 0 → ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ↔ ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) ) ) |
| 96 |
95
|
anbi2d |
⊢ ( 𝐷 = 0 → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ↔ ( 0 ≤ 𝐷 ∧ ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) ) ) ) |
| 97 |
96
|
adantr |
⊢ ( ( 𝐷 = 0 ∧ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ↔ ( 0 ≤ 𝐷 ∧ ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) ) ) ) |
| 98 |
|
ianor |
⊢ ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ↔ ( ¬ 𝑀 = 0 ∨ ¬ 𝑁 = 0 ) ) |
| 99 |
|
dvdszrcl |
⊢ ( 0 ∥ 𝑀 → ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) |
| 100 |
|
0dvds |
⊢ ( 𝑀 ∈ ℤ → ( 0 ∥ 𝑀 ↔ 𝑀 = 0 ) ) |
| 101 |
|
pm2.24 |
⊢ ( 𝑀 = 0 → ( ¬ 𝑀 = 0 → 𝐷 ∈ ℕ ) ) |
| 102 |
100 101
|
biimtrdi |
⊢ ( 𝑀 ∈ ℤ → ( 0 ∥ 𝑀 → ( ¬ 𝑀 = 0 → 𝐷 ∈ ℕ ) ) ) |
| 103 |
102
|
adantl |
⊢ ( ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 0 ∥ 𝑀 → ( ¬ 𝑀 = 0 → 𝐷 ∈ ℕ ) ) ) |
| 104 |
99 103
|
mpcom |
⊢ ( 0 ∥ 𝑀 → ( ¬ 𝑀 = 0 → 𝐷 ∈ ℕ ) ) |
| 105 |
104
|
adantr |
⊢ ( ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) → ( ¬ 𝑀 = 0 → 𝐷 ∈ ℕ ) ) |
| 106 |
105
|
com12 |
⊢ ( ¬ 𝑀 = 0 → ( ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) → 𝐷 ∈ ℕ ) ) |
| 107 |
|
dvdszrcl |
⊢ ( 0 ∥ 𝑁 → ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 108 |
|
0dvds |
⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) |
| 109 |
|
pm2.24 |
⊢ ( 𝑁 = 0 → ( ¬ 𝑁 = 0 → 𝐷 ∈ ℕ ) ) |
| 110 |
108 109
|
biimtrdi |
⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 → ( ¬ 𝑁 = 0 → 𝐷 ∈ ℕ ) ) ) |
| 111 |
110
|
adantl |
⊢ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ∥ 𝑁 → ( ¬ 𝑁 = 0 → 𝐷 ∈ ℕ ) ) ) |
| 112 |
107 111
|
mpcom |
⊢ ( 0 ∥ 𝑁 → ( ¬ 𝑁 = 0 → 𝐷 ∈ ℕ ) ) |
| 113 |
112
|
adantl |
⊢ ( ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) → ( ¬ 𝑁 = 0 → 𝐷 ∈ ℕ ) ) |
| 114 |
113
|
com12 |
⊢ ( ¬ 𝑁 = 0 → ( ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) → 𝐷 ∈ ℕ ) ) |
| 115 |
106 114
|
jaoi |
⊢ ( ( ¬ 𝑀 = 0 ∨ ¬ 𝑁 = 0 ) → ( ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) → 𝐷 ∈ ℕ ) ) |
| 116 |
98 115
|
sylbi |
⊢ ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) → 𝐷 ∈ ℕ ) ) |
| 117 |
116
|
adantld |
⊢ ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 0 ≤ 𝐷 ∧ ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) |
| 118 |
117
|
ad2antll |
⊢ ( ( 𝐷 = 0 ∧ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) → ( ( 0 ≤ 𝐷 ∧ ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) |
| 119 |
97 118
|
sylbid |
⊢ ( ( 𝐷 = 0 ∧ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) |
| 120 |
119
|
ex |
⊢ ( 𝐷 = 0 → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) ) |
| 121 |
92 120
|
jaoi |
⊢ ( ( 𝐷 ∈ ℕ ∨ 𝐷 = 0 ) → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) ) |
| 122 |
91 121
|
sylbi |
⊢ ( 𝐷 ∈ ℕ0 → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) ) |
| 123 |
122
|
impcom |
⊢ ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ 𝐷 ∈ ℕ0 ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) |
| 124 |
123
|
imp |
⊢ ( ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ 𝐷 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) → 𝐷 ∈ ℕ ) |
| 125 |
|
dvdsle |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ( 𝑦 ∥ 𝐷 → 𝑦 ≤ 𝐷 ) ) |
| 126 |
90 124 125
|
syl2anc |
⊢ ( ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ 𝐷 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) → ( 𝑦 ∥ 𝐷 → 𝑦 ≤ 𝐷 ) ) |
| 127 |
126
|
exp31 |
⊢ ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝐷 ∈ ℕ0 → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ( 𝑦 ∥ 𝐷 → 𝑦 ≤ 𝐷 ) ) ) ) |
| 128 |
127
|
com14 |
⊢ ( 𝑦 ∥ 𝐷 → ( 𝐷 ∈ ℕ0 → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → 𝑦 ≤ 𝐷 ) ) ) ) |
| 129 |
128
|
imp |
⊢ ( ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → 𝑦 ≤ 𝐷 ) ) ) |
| 130 |
129
|
impcom |
⊢ ( ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ∧ ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) ) → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → 𝑦 ≤ 𝐷 ) ) |
| 131 |
130
|
imp |
⊢ ( ( ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ∧ ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) → 𝑦 ≤ 𝐷 ) |
| 132 |
|
zre |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℝ ) |
| 133 |
132
|
ad2antrr |
⊢ ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → 𝑦 ∈ ℝ ) |
| 134 |
68
|
ad2antlr |
⊢ ( ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ∧ ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) ) → 𝐷 ∈ ℝ ) |
| 135 |
|
lenlt |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝑦 ≤ 𝐷 ↔ ¬ 𝐷 < 𝑦 ) ) |
| 136 |
133 134 135
|
syl2anr |
⊢ ( ( ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ∧ ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) → ( 𝑦 ≤ 𝐷 ↔ ¬ 𝐷 < 𝑦 ) ) |
| 137 |
131 136
|
mpbid |
⊢ ( ( ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ∧ ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) → ¬ 𝐷 < 𝑦 ) |
| 138 |
137
|
exp31 |
⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ( ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ¬ 𝐷 < 𝑦 ) ) ) |
| 139 |
89 138
|
mpan2d |
⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ( 𝑦 ∥ 𝐷 → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ¬ 𝐷 < 𝑦 ) ) ) |
| 140 |
139
|
com13 |
⊢ ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑦 ∥ 𝐷 → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ¬ 𝐷 < 𝑦 ) ) ) |
| 141 |
140
|
adantr |
⊢ ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑦 ∥ 𝐷 → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ¬ 𝐷 < 𝑦 ) ) ) |
| 142 |
83 141
|
syld |
⊢ ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ¬ 𝐷 < 𝑦 ) ) ) |
| 143 |
142
|
com13 |
⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) → ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ¬ 𝐷 < 𝑦 ) ) ) |
| 144 |
143
|
3impia |
⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) → ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ¬ 𝐷 < 𝑦 ) ) |
| 145 |
144
|
com12 |
⊢ ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) → ¬ 𝐷 < 𝑦 ) ) |
| 146 |
145
|
expimpd |
⊢ ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) → ¬ 𝐷 < 𝑦 ) ) |
| 147 |
146
|
expimpd |
⊢ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) → ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → ¬ 𝐷 < 𝑦 ) ) |
| 148 |
74 147
|
sylbi |
⊢ ( 𝑦 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } → ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → ¬ 𝐷 < 𝑦 ) ) |
| 149 |
148
|
impcom |
⊢ ( ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) ∧ 𝑦 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } ) → ¬ 𝐷 < 𝑦 ) |
| 150 |
66
|
adantr |
⊢ ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) → 𝐷 ∈ ℤ ) |
| 151 |
150
|
ancri |
⊢ ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) → ( 𝐷 ∈ ℤ ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) |
| 152 |
151
|
3ad2ant2 |
⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) → ( 𝐷 ∈ ℤ ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) |
| 153 |
152
|
ad2antll |
⊢ ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → ( 𝐷 ∈ ℤ ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) |
| 154 |
153
|
adantr |
⊢ ( ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝐷 ) ) → ( 𝐷 ∈ ℤ ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) |
| 155 |
|
breq1 |
⊢ ( 𝑛 = 𝐷 → ( 𝑛 ∥ 𝑀 ↔ 𝐷 ∥ 𝑀 ) ) |
| 156 |
|
breq1 |
⊢ ( 𝑛 = 𝐷 → ( 𝑛 ∥ 𝑁 ↔ 𝐷 ∥ 𝑁 ) ) |
| 157 |
155 156
|
anbi12d |
⊢ ( 𝑛 = 𝐷 → ( ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) ↔ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) |
| 158 |
157
|
elrab |
⊢ ( 𝐷 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } ↔ ( 𝐷 ∈ ℤ ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) |
| 159 |
154 158
|
sylibr |
⊢ ( ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝐷 ) ) → 𝐷 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } ) |
| 160 |
|
breq2 |
⊢ ( 𝑧 = 𝐷 → ( 𝑦 < 𝑧 ↔ 𝑦 < 𝐷 ) ) |
| 161 |
160
|
adantl |
⊢ ( ( ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝐷 ) ) ∧ 𝑧 = 𝐷 ) → ( 𝑦 < 𝑧 ↔ 𝑦 < 𝐷 ) ) |
| 162 |
|
simprr |
⊢ ( ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝐷 ) ) → 𝑦 < 𝐷 ) |
| 163 |
159 161 162
|
rspcedvd |
⊢ ( ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝐷 ) ) → ∃ 𝑧 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } 𝑦 < 𝑧 ) |
| 164 |
64 70 149 163
|
eqsupd |
⊢ ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) = 𝐷 ) |
| 165 |
62 164
|
eqtrd |
⊢ ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = 𝐷 ) |
| 166 |
60 165
|
pm2.61ian |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = 𝐷 ) |
| 167 |
22 166
|
eqtr2d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) → 𝐷 = ( 𝑀 gcd 𝑁 ) ) |
| 168 |
20 167
|
impbida |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐷 = ( 𝑀 gcd 𝑁 ) ↔ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) |