Step |
Hyp |
Ref |
Expression |
1 |
|
gcdcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ0 ) |
2 |
1
|
nn0ge0d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 0 ≤ ( 𝑀 gcd 𝑁 ) ) |
3 |
|
gcddvds |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
4 |
|
3anass |
⊢ ( ( 𝑒 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ↔ ( 𝑒 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) ) |
5 |
4
|
biancomi |
⊢ ( ( 𝑒 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑒 ∈ ℤ ) ) |
6 |
|
dvdsgcd |
⊢ ( ( 𝑒 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) |
7 |
5 6
|
sylbir |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑒 ∈ ℤ ) → ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) |
8 |
7
|
ralrimiva |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) |
9 |
2 3 8
|
3jca |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ≤ ( 𝑀 gcd 𝑁 ) ∧ ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐷 = ( 𝑀 gcd 𝑁 ) ) → ( 0 ≤ ( 𝑀 gcd 𝑁 ) ∧ ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) ) |
11 |
|
breq2 |
⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( 0 ≤ 𝐷 ↔ 0 ≤ ( 𝑀 gcd 𝑁 ) ) ) |
12 |
|
breq1 |
⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( 𝐷 ∥ 𝑀 ↔ ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ) ) |
13 |
|
breq1 |
⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( 𝐷 ∥ 𝑁 ↔ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
14 |
12 13
|
anbi12d |
⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ↔ ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) ) |
15 |
|
breq2 |
⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( 𝑒 ∥ 𝐷 ↔ 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ↔ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) ) |
17 |
16
|
ralbidv |
⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ↔ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) ) |
18 |
11 14 17
|
3anbi123d |
⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ↔ ( 0 ≤ ( 𝑀 gcd 𝑁 ) ∧ ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) ) ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐷 = ( 𝑀 gcd 𝑁 ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ↔ ( 0 ≤ ( 𝑀 gcd 𝑁 ) ∧ ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) ) ) |
20 |
10 19
|
mpbird |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐷 = ( 𝑀 gcd 𝑁 ) ) → ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) |
21 |
|
gcdval |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) = if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) → ( 𝑀 gcd 𝑁 ) = if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) ) |
23 |
|
iftrue |
⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = 0 ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = 0 ) |
25 |
|
breq2 |
⊢ ( 𝑀 = 0 → ( 𝐷 ∥ 𝑀 ↔ 𝐷 ∥ 0 ) ) |
26 |
|
breq2 |
⊢ ( 𝑁 = 0 → ( 𝐷 ∥ 𝑁 ↔ 𝐷 ∥ 0 ) ) |
27 |
25 26
|
bi2anan9 |
⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ↔ ( 𝐷 ∥ 0 ∧ 𝐷 ∥ 0 ) ) ) |
28 |
|
breq2 |
⊢ ( 𝑀 = 0 → ( 𝑒 ∥ 𝑀 ↔ 𝑒 ∥ 0 ) ) |
29 |
|
breq2 |
⊢ ( 𝑁 = 0 → ( 𝑒 ∥ 𝑁 ↔ 𝑒 ∥ 0 ) ) |
30 |
28 29
|
bi2anan9 |
⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) ↔ ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) ) ) |
31 |
30
|
imbi1d |
⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ↔ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ) ) |
32 |
31
|
ralbidv |
⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ↔ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ) ) |
33 |
27 32
|
3anbi23d |
⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ↔ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 0 ∧ 𝐷 ∥ 0 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ) ) ) |
34 |
|
dvdszrcl |
⊢ ( 𝐷 ∥ 0 → ( 𝐷 ∈ ℤ ∧ 0 ∈ ℤ ) ) |
35 |
|
dvds0 |
⊢ ( 𝑒 ∈ ℤ → 𝑒 ∥ 0 ) |
36 |
35 35
|
jca |
⊢ ( 𝑒 ∈ ℤ → ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) ) |
37 |
36
|
adantl |
⊢ ( ( ( 𝐷 ∈ ℤ ∧ 0 ≤ 𝐷 ) ∧ 𝑒 ∈ ℤ ) → ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) ) |
38 |
|
pm5.5 |
⊢ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → ( ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ↔ 𝑒 ∥ 𝐷 ) ) |
39 |
37 38
|
syl |
⊢ ( ( ( 𝐷 ∈ ℤ ∧ 0 ≤ 𝐷 ) ∧ 𝑒 ∈ ℤ ) → ( ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ↔ 𝑒 ∥ 𝐷 ) ) |
40 |
39
|
ralbidva |
⊢ ( ( 𝐷 ∈ ℤ ∧ 0 ≤ 𝐷 ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ↔ ∀ 𝑒 ∈ ℤ 𝑒 ∥ 𝐷 ) ) |
41 |
|
0z |
⊢ 0 ∈ ℤ |
42 |
|
breq1 |
⊢ ( 𝑒 = 0 → ( 𝑒 ∥ 𝐷 ↔ 0 ∥ 𝐷 ) ) |
43 |
42
|
rspcv |
⊢ ( 0 ∈ ℤ → ( ∀ 𝑒 ∈ ℤ 𝑒 ∥ 𝐷 → 0 ∥ 𝐷 ) ) |
44 |
41 43
|
ax-mp |
⊢ ( ∀ 𝑒 ∈ ℤ 𝑒 ∥ 𝐷 → 0 ∥ 𝐷 ) |
45 |
|
0dvds |
⊢ ( 𝐷 ∈ ℤ → ( 0 ∥ 𝐷 ↔ 𝐷 = 0 ) ) |
46 |
45
|
biimpd |
⊢ ( 𝐷 ∈ ℤ → ( 0 ∥ 𝐷 → 𝐷 = 0 ) ) |
47 |
|
eqcom |
⊢ ( 0 = 𝐷 ↔ 𝐷 = 0 ) |
48 |
46 47
|
syl6ibr |
⊢ ( 𝐷 ∈ ℤ → ( 0 ∥ 𝐷 → 0 = 𝐷 ) ) |
49 |
44 48
|
syl5 |
⊢ ( 𝐷 ∈ ℤ → ( ∀ 𝑒 ∈ ℤ 𝑒 ∥ 𝐷 → 0 = 𝐷 ) ) |
50 |
49
|
adantr |
⊢ ( ( 𝐷 ∈ ℤ ∧ 0 ≤ 𝐷 ) → ( ∀ 𝑒 ∈ ℤ 𝑒 ∥ 𝐷 → 0 = 𝐷 ) ) |
51 |
40 50
|
sylbid |
⊢ ( ( 𝐷 ∈ ℤ ∧ 0 ≤ 𝐷 ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) → 0 = 𝐷 ) ) |
52 |
51
|
ex |
⊢ ( 𝐷 ∈ ℤ → ( 0 ≤ 𝐷 → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) → 0 = 𝐷 ) ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝐷 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 0 ≤ 𝐷 → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) → 0 = 𝐷 ) ) ) |
54 |
34 53
|
syl |
⊢ ( 𝐷 ∥ 0 → ( 0 ≤ 𝐷 → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) → 0 = 𝐷 ) ) ) |
55 |
54
|
adantr |
⊢ ( ( 𝐷 ∥ 0 ∧ 𝐷 ∥ 0 ) → ( 0 ≤ 𝐷 → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) → 0 = 𝐷 ) ) ) |
56 |
55
|
3imp21 |
⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 0 ∧ 𝐷 ∥ 0 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ) → 0 = 𝐷 ) |
57 |
33 56
|
syl6bi |
⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) → 0 = 𝐷 ) ) |
58 |
57
|
adantld |
⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) → 0 = 𝐷 ) ) |
59 |
58
|
imp |
⊢ ( ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → 0 = 𝐷 ) |
60 |
24 59
|
eqtrd |
⊢ ( ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = 𝐷 ) |
61 |
|
iffalse |
⊢ ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) |
62 |
61
|
adantr |
⊢ ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) |
63 |
|
ltso |
⊢ < Or ℝ |
64 |
63
|
a1i |
⊢ ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → < Or ℝ ) |
65 |
|
dvdszrcl |
⊢ ( 𝐷 ∥ 𝑀 → ( 𝐷 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) |
66 |
65
|
simpld |
⊢ ( 𝐷 ∥ 𝑀 → 𝐷 ∈ ℤ ) |
67 |
66
|
zred |
⊢ ( 𝐷 ∥ 𝑀 → 𝐷 ∈ ℝ ) |
68 |
67
|
adantr |
⊢ ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) → 𝐷 ∈ ℝ ) |
69 |
68
|
3ad2ant2 |
⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) → 𝐷 ∈ ℝ ) |
70 |
69
|
ad2antll |
⊢ ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → 𝐷 ∈ ℝ ) |
71 |
|
breq1 |
⊢ ( 𝑛 = 𝑦 → ( 𝑛 ∥ 𝑀 ↔ 𝑦 ∥ 𝑀 ) ) |
72 |
|
breq1 |
⊢ ( 𝑛 = 𝑦 → ( 𝑛 ∥ 𝑁 ↔ 𝑦 ∥ 𝑁 ) ) |
73 |
71 72
|
anbi12d |
⊢ ( 𝑛 = 𝑦 → ( ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) ↔ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ) |
74 |
73
|
elrab |
⊢ ( 𝑦 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } ↔ ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ) |
75 |
|
breq1 |
⊢ ( 𝑒 = 𝑦 → ( 𝑒 ∥ 𝑀 ↔ 𝑦 ∥ 𝑀 ) ) |
76 |
|
breq1 |
⊢ ( 𝑒 = 𝑦 → ( 𝑒 ∥ 𝑁 ↔ 𝑦 ∥ 𝑁 ) ) |
77 |
75 76
|
anbi12d |
⊢ ( 𝑒 = 𝑦 → ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) ↔ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ) |
78 |
|
breq1 |
⊢ ( 𝑒 = 𝑦 → ( 𝑒 ∥ 𝐷 ↔ 𝑦 ∥ 𝐷 ) ) |
79 |
77 78
|
imbi12d |
⊢ ( 𝑒 = 𝑦 → ( ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ↔ ( ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) → 𝑦 ∥ 𝐷 ) ) ) |
80 |
79
|
rspcv |
⊢ ( 𝑦 ∈ ℤ → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) → ( ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) → 𝑦 ∥ 𝐷 ) ) ) |
81 |
80
|
com23 |
⊢ ( 𝑦 ∈ ℤ → ( ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) → 𝑦 ∥ 𝐷 ) ) ) |
82 |
81
|
imp |
⊢ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) → 𝑦 ∥ 𝐷 ) ) |
83 |
82
|
ad2antrr |
⊢ ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) → 𝑦 ∥ 𝐷 ) ) |
84 |
|
elnn0z |
⊢ ( 𝐷 ∈ ℕ0 ↔ ( 𝐷 ∈ ℤ ∧ 0 ≤ 𝐷 ) ) |
85 |
84
|
simplbi2 |
⊢ ( 𝐷 ∈ ℤ → ( 0 ≤ 𝐷 → 𝐷 ∈ ℕ0 ) ) |
86 |
85
|
adantr |
⊢ ( ( 𝐷 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 0 ≤ 𝐷 → 𝐷 ∈ ℕ0 ) ) |
87 |
65 86
|
syl |
⊢ ( 𝐷 ∥ 𝑀 → ( 0 ≤ 𝐷 → 𝐷 ∈ ℕ0 ) ) |
88 |
87
|
adantr |
⊢ ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) → ( 0 ≤ 𝐷 → 𝐷 ∈ ℕ0 ) ) |
89 |
88
|
impcom |
⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ0 ) |
90 |
|
simp-4l |
⊢ ( ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ 𝐷 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) → 𝑦 ∈ ℤ ) |
91 |
|
elnn0 |
⊢ ( 𝐷 ∈ ℕ0 ↔ ( 𝐷 ∈ ℕ ∨ 𝐷 = 0 ) ) |
92 |
|
2a1 |
⊢ ( 𝐷 ∈ ℕ → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) ) |
93 |
|
breq1 |
⊢ ( 𝐷 = 0 → ( 𝐷 ∥ 𝑀 ↔ 0 ∥ 𝑀 ) ) |
94 |
|
breq1 |
⊢ ( 𝐷 = 0 → ( 𝐷 ∥ 𝑁 ↔ 0 ∥ 𝑁 ) ) |
95 |
93 94
|
anbi12d |
⊢ ( 𝐷 = 0 → ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ↔ ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) ) ) |
96 |
95
|
anbi2d |
⊢ ( 𝐷 = 0 → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ↔ ( 0 ≤ 𝐷 ∧ ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) ) ) ) |
97 |
96
|
adantr |
⊢ ( ( 𝐷 = 0 ∧ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ↔ ( 0 ≤ 𝐷 ∧ ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) ) ) ) |
98 |
|
ianor |
⊢ ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ↔ ( ¬ 𝑀 = 0 ∨ ¬ 𝑁 = 0 ) ) |
99 |
|
dvdszrcl |
⊢ ( 0 ∥ 𝑀 → ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) |
100 |
|
0dvds |
⊢ ( 𝑀 ∈ ℤ → ( 0 ∥ 𝑀 ↔ 𝑀 = 0 ) ) |
101 |
|
pm2.24 |
⊢ ( 𝑀 = 0 → ( ¬ 𝑀 = 0 → 𝐷 ∈ ℕ ) ) |
102 |
100 101
|
syl6bi |
⊢ ( 𝑀 ∈ ℤ → ( 0 ∥ 𝑀 → ( ¬ 𝑀 = 0 → 𝐷 ∈ ℕ ) ) ) |
103 |
102
|
adantl |
⊢ ( ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 0 ∥ 𝑀 → ( ¬ 𝑀 = 0 → 𝐷 ∈ ℕ ) ) ) |
104 |
99 103
|
mpcom |
⊢ ( 0 ∥ 𝑀 → ( ¬ 𝑀 = 0 → 𝐷 ∈ ℕ ) ) |
105 |
104
|
adantr |
⊢ ( ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) → ( ¬ 𝑀 = 0 → 𝐷 ∈ ℕ ) ) |
106 |
105
|
com12 |
⊢ ( ¬ 𝑀 = 0 → ( ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) → 𝐷 ∈ ℕ ) ) |
107 |
|
dvdszrcl |
⊢ ( 0 ∥ 𝑁 → ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
108 |
|
0dvds |
⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) |
109 |
|
pm2.24 |
⊢ ( 𝑁 = 0 → ( ¬ 𝑁 = 0 → 𝐷 ∈ ℕ ) ) |
110 |
108 109
|
syl6bi |
⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 → ( ¬ 𝑁 = 0 → 𝐷 ∈ ℕ ) ) ) |
111 |
110
|
adantl |
⊢ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ∥ 𝑁 → ( ¬ 𝑁 = 0 → 𝐷 ∈ ℕ ) ) ) |
112 |
107 111
|
mpcom |
⊢ ( 0 ∥ 𝑁 → ( ¬ 𝑁 = 0 → 𝐷 ∈ ℕ ) ) |
113 |
112
|
adantl |
⊢ ( ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) → ( ¬ 𝑁 = 0 → 𝐷 ∈ ℕ ) ) |
114 |
113
|
com12 |
⊢ ( ¬ 𝑁 = 0 → ( ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) → 𝐷 ∈ ℕ ) ) |
115 |
106 114
|
jaoi |
⊢ ( ( ¬ 𝑀 = 0 ∨ ¬ 𝑁 = 0 ) → ( ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) → 𝐷 ∈ ℕ ) ) |
116 |
98 115
|
sylbi |
⊢ ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) → 𝐷 ∈ ℕ ) ) |
117 |
116
|
adantld |
⊢ ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 0 ≤ 𝐷 ∧ ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) |
118 |
117
|
ad2antll |
⊢ ( ( 𝐷 = 0 ∧ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) → ( ( 0 ≤ 𝐷 ∧ ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) |
119 |
97 118
|
sylbid |
⊢ ( ( 𝐷 = 0 ∧ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) |
120 |
119
|
ex |
⊢ ( 𝐷 = 0 → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) ) |
121 |
92 120
|
jaoi |
⊢ ( ( 𝐷 ∈ ℕ ∨ 𝐷 = 0 ) → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) ) |
122 |
91 121
|
sylbi |
⊢ ( 𝐷 ∈ ℕ0 → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) ) |
123 |
122
|
impcom |
⊢ ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ 𝐷 ∈ ℕ0 ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) |
124 |
123
|
imp |
⊢ ( ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ 𝐷 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) → 𝐷 ∈ ℕ ) |
125 |
|
dvdsle |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ( 𝑦 ∥ 𝐷 → 𝑦 ≤ 𝐷 ) ) |
126 |
90 124 125
|
syl2anc |
⊢ ( ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ 𝐷 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) → ( 𝑦 ∥ 𝐷 → 𝑦 ≤ 𝐷 ) ) |
127 |
126
|
exp31 |
⊢ ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝐷 ∈ ℕ0 → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ( 𝑦 ∥ 𝐷 → 𝑦 ≤ 𝐷 ) ) ) ) |
128 |
127
|
com14 |
⊢ ( 𝑦 ∥ 𝐷 → ( 𝐷 ∈ ℕ0 → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → 𝑦 ≤ 𝐷 ) ) ) ) |
129 |
128
|
imp |
⊢ ( ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → 𝑦 ≤ 𝐷 ) ) ) |
130 |
129
|
impcom |
⊢ ( ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ∧ ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) ) → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → 𝑦 ≤ 𝐷 ) ) |
131 |
130
|
imp |
⊢ ( ( ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ∧ ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) → 𝑦 ≤ 𝐷 ) |
132 |
|
zre |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℝ ) |
133 |
132
|
ad2antrr |
⊢ ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → 𝑦 ∈ ℝ ) |
134 |
68
|
ad2antlr |
⊢ ( ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ∧ ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) ) → 𝐷 ∈ ℝ ) |
135 |
|
lenlt |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝑦 ≤ 𝐷 ↔ ¬ 𝐷 < 𝑦 ) ) |
136 |
133 134 135
|
syl2anr |
⊢ ( ( ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ∧ ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) → ( 𝑦 ≤ 𝐷 ↔ ¬ 𝐷 < 𝑦 ) ) |
137 |
131 136
|
mpbid |
⊢ ( ( ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ∧ ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) → ¬ 𝐷 < 𝑦 ) |
138 |
137
|
exp31 |
⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ( ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ¬ 𝐷 < 𝑦 ) ) ) |
139 |
89 138
|
mpan2d |
⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ( 𝑦 ∥ 𝐷 → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ¬ 𝐷 < 𝑦 ) ) ) |
140 |
139
|
com13 |
⊢ ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑦 ∥ 𝐷 → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ¬ 𝐷 < 𝑦 ) ) ) |
141 |
140
|
adantr |
⊢ ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑦 ∥ 𝐷 → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ¬ 𝐷 < 𝑦 ) ) ) |
142 |
83 141
|
syld |
⊢ ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ¬ 𝐷 < 𝑦 ) ) ) |
143 |
142
|
com13 |
⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) → ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ¬ 𝐷 < 𝑦 ) ) ) |
144 |
143
|
3impia |
⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) → ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ¬ 𝐷 < 𝑦 ) ) |
145 |
144
|
com12 |
⊢ ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) → ¬ 𝐷 < 𝑦 ) ) |
146 |
145
|
expimpd |
⊢ ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) → ¬ 𝐷 < 𝑦 ) ) |
147 |
146
|
expimpd |
⊢ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) → ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → ¬ 𝐷 < 𝑦 ) ) |
148 |
74 147
|
sylbi |
⊢ ( 𝑦 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } → ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → ¬ 𝐷 < 𝑦 ) ) |
149 |
148
|
impcom |
⊢ ( ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) ∧ 𝑦 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } ) → ¬ 𝐷 < 𝑦 ) |
150 |
66
|
adantr |
⊢ ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) → 𝐷 ∈ ℤ ) |
151 |
150
|
ancri |
⊢ ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) → ( 𝐷 ∈ ℤ ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) |
152 |
151
|
3ad2ant2 |
⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) → ( 𝐷 ∈ ℤ ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) |
153 |
152
|
ad2antll |
⊢ ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → ( 𝐷 ∈ ℤ ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) |
154 |
153
|
adantr |
⊢ ( ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝐷 ) ) → ( 𝐷 ∈ ℤ ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) |
155 |
|
breq1 |
⊢ ( 𝑛 = 𝐷 → ( 𝑛 ∥ 𝑀 ↔ 𝐷 ∥ 𝑀 ) ) |
156 |
|
breq1 |
⊢ ( 𝑛 = 𝐷 → ( 𝑛 ∥ 𝑁 ↔ 𝐷 ∥ 𝑁 ) ) |
157 |
155 156
|
anbi12d |
⊢ ( 𝑛 = 𝐷 → ( ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) ↔ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) |
158 |
157
|
elrab |
⊢ ( 𝐷 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } ↔ ( 𝐷 ∈ ℤ ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) |
159 |
154 158
|
sylibr |
⊢ ( ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝐷 ) ) → 𝐷 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } ) |
160 |
|
breq2 |
⊢ ( 𝑧 = 𝐷 → ( 𝑦 < 𝑧 ↔ 𝑦 < 𝐷 ) ) |
161 |
160
|
adantl |
⊢ ( ( ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝐷 ) ) ∧ 𝑧 = 𝐷 ) → ( 𝑦 < 𝑧 ↔ 𝑦 < 𝐷 ) ) |
162 |
|
simprr |
⊢ ( ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝐷 ) ) → 𝑦 < 𝐷 ) |
163 |
159 161 162
|
rspcedvd |
⊢ ( ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝐷 ) ) → ∃ 𝑧 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } 𝑦 < 𝑧 ) |
164 |
64 70 149 163
|
eqsupd |
⊢ ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) = 𝐷 ) |
165 |
62 164
|
eqtrd |
⊢ ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = 𝐷 ) |
166 |
60 165
|
pm2.61ian |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = 𝐷 ) |
167 |
22 166
|
eqtr2d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) → 𝐷 = ( 𝑀 gcd 𝑁 ) ) |
168 |
20 167
|
impbida |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐷 = ( 𝑀 gcd 𝑁 ) ↔ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) |