Step |
Hyp |
Ref |
Expression |
1 |
|
dfgrp2.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
dfgrp2.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
grpsgrp |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Smgrp ) |
4 |
|
grpmnd |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
6 |
1 5
|
mndidcl |
⊢ ( 𝐺 ∈ Mnd → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
7 |
4 6
|
syl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
8 |
|
oveq1 |
⊢ ( 𝑛 = ( 0g ‘ 𝐺 ) → ( 𝑛 + 𝑥 ) = ( ( 0g ‘ 𝐺 ) + 𝑥 ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑛 = ( 0g ‘ 𝐺 ) → ( ( 𝑛 + 𝑥 ) = 𝑥 ↔ ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ) ) |
10 |
|
eqeq2 |
⊢ ( 𝑛 = ( 0g ‘ 𝐺 ) → ( ( 𝑖 + 𝑥 ) = 𝑛 ↔ ( 𝑖 + 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
11 |
10
|
rexbidv |
⊢ ( 𝑛 = ( 0g ‘ 𝐺 ) → ( ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ↔ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
12 |
9 11
|
anbi12d |
⊢ ( 𝑛 = ( 0g ‘ 𝐺 ) → ( ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ↔ ( ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) ) |
13 |
12
|
ralbidv |
⊢ ( 𝑛 = ( 0g ‘ 𝐺 ) → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑛 = ( 0g ‘ 𝐺 ) ) → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) ) |
15 |
1 2 5
|
mndlid |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ) |
16 |
4 15
|
sylan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ) |
17 |
1 2 5
|
grpinvex |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
18 |
16 17
|
jca |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
19 |
18
|
ralrimiva |
⊢ ( 𝐺 ∈ Grp → ∀ 𝑥 ∈ 𝐵 ( ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
20 |
7 14 19
|
rspcedvd |
⊢ ( 𝐺 ∈ Grp → ∃ 𝑛 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) |
21 |
3 20
|
jca |
⊢ ( 𝐺 ∈ Grp → ( 𝐺 ∈ Smgrp ∧ ∃ 𝑛 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ) |
22 |
1
|
a1i |
⊢ ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) → 𝐵 = ( Base ‘ 𝐺 ) ) |
23 |
2
|
a1i |
⊢ ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) → + = ( +g ‘ 𝐺 ) ) |
24 |
|
sgrpmgm |
⊢ ( 𝐺 ∈ Smgrp → 𝐺 ∈ Mgm ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) → 𝐺 ∈ Mgm ) |
26 |
1 2
|
mgmcl |
⊢ ( ( 𝐺 ∈ Mgm ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 + 𝑏 ) ∈ 𝐵 ) |
27 |
25 26
|
syl3an1 |
⊢ ( ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 + 𝑏 ) ∈ 𝐵 ) |
28 |
1 2
|
sgrpass |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( 𝑎 + 𝑏 ) + 𝑐 ) = ( 𝑎 + ( 𝑏 + 𝑐 ) ) ) |
29 |
28
|
adantll |
⊢ ( ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( 𝑎 + 𝑏 ) + 𝑐 ) = ( 𝑎 + ( 𝑏 + 𝑐 ) ) ) |
30 |
|
simpll |
⊢ ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) → 𝑛 ∈ 𝐵 ) |
31 |
|
oveq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝑛 + 𝑥 ) = ( 𝑛 + 𝑎 ) ) |
32 |
|
id |
⊢ ( 𝑥 = 𝑎 → 𝑥 = 𝑎 ) |
33 |
31 32
|
eqeq12d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑛 + 𝑥 ) = 𝑥 ↔ ( 𝑛 + 𝑎 ) = 𝑎 ) ) |
34 |
|
oveq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝑖 + 𝑥 ) = ( 𝑖 + 𝑎 ) ) |
35 |
34
|
eqeq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑖 + 𝑥 ) = 𝑛 ↔ ( 𝑖 + 𝑎 ) = 𝑛 ) ) |
36 |
35
|
rexbidv |
⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ↔ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑛 ) ) |
37 |
33 36
|
anbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ↔ ( ( 𝑛 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑛 ) ) ) |
38 |
37
|
rspcv |
⊢ ( 𝑎 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) → ( ( 𝑛 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑛 ) ) ) |
39 |
|
simpl |
⊢ ( ( ( 𝑛 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑛 ) → ( 𝑛 + 𝑎 ) = 𝑎 ) |
40 |
38 39
|
syl6com |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) → ( 𝑎 ∈ 𝐵 → ( 𝑛 + 𝑎 ) = 𝑎 ) ) |
41 |
40
|
ad2antlr |
⊢ ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) → ( 𝑎 ∈ 𝐵 → ( 𝑛 + 𝑎 ) = 𝑎 ) ) |
42 |
41
|
imp |
⊢ ( ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑛 + 𝑎 ) = 𝑎 ) |
43 |
|
oveq1 |
⊢ ( 𝑖 = 𝑏 → ( 𝑖 + 𝑎 ) = ( 𝑏 + 𝑎 ) ) |
44 |
43
|
eqeq1d |
⊢ ( 𝑖 = 𝑏 → ( ( 𝑖 + 𝑎 ) = 𝑛 ↔ ( 𝑏 + 𝑎 ) = 𝑛 ) ) |
45 |
44
|
cbvrexvw |
⊢ ( ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑛 ↔ ∃ 𝑏 ∈ 𝐵 ( 𝑏 + 𝑎 ) = 𝑛 ) |
46 |
45
|
biimpi |
⊢ ( ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑛 → ∃ 𝑏 ∈ 𝐵 ( 𝑏 + 𝑎 ) = 𝑛 ) |
47 |
46
|
adantl |
⊢ ( ( ( 𝑛 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑛 ) → ∃ 𝑏 ∈ 𝐵 ( 𝑏 + 𝑎 ) = 𝑛 ) |
48 |
38 47
|
syl6com |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) → ( 𝑎 ∈ 𝐵 → ∃ 𝑏 ∈ 𝐵 ( 𝑏 + 𝑎 ) = 𝑛 ) ) |
49 |
48
|
ad2antlr |
⊢ ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) → ( 𝑎 ∈ 𝐵 → ∃ 𝑏 ∈ 𝐵 ( 𝑏 + 𝑎 ) = 𝑛 ) ) |
50 |
49
|
imp |
⊢ ( ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) ∧ 𝑎 ∈ 𝐵 ) → ∃ 𝑏 ∈ 𝐵 ( 𝑏 + 𝑎 ) = 𝑛 ) |
51 |
22 23 27 29 30 42 50
|
isgrpde |
⊢ ( ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ∧ 𝐺 ∈ Smgrp ) → 𝐺 ∈ Grp ) |
52 |
51
|
ex |
⊢ ( ( 𝑛 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) → ( 𝐺 ∈ Smgrp → 𝐺 ∈ Grp ) ) |
53 |
52
|
rexlimiva |
⊢ ( ∃ 𝑛 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) → ( 𝐺 ∈ Smgrp → 𝐺 ∈ Grp ) ) |
54 |
53
|
impcom |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ∃ 𝑛 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) → 𝐺 ∈ Grp ) |
55 |
21 54
|
impbii |
⊢ ( 𝐺 ∈ Grp ↔ ( 𝐺 ∈ Smgrp ∧ ∃ 𝑛 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑛 + 𝑥 ) = 𝑥 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑥 ) = 𝑛 ) ) ) |