| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfgrp2.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | dfgrp2.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | grpsgrp | ⊢ ( 𝐺  ∈  Grp  →  𝐺  ∈  Smgrp ) | 
						
							| 4 |  | grpmnd | ⊢ ( 𝐺  ∈  Grp  →  𝐺  ∈  Mnd ) | 
						
							| 5 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 6 | 1 5 | mndidcl | ⊢ ( 𝐺  ∈  Mnd  →  ( 0g ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 7 | 4 6 | syl | ⊢ ( 𝐺  ∈  Grp  →  ( 0g ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 8 |  | oveq1 | ⊢ ( 𝑛  =  ( 0g ‘ 𝐺 )  →  ( 𝑛  +  𝑥 )  =  ( ( 0g ‘ 𝐺 )  +  𝑥 ) ) | 
						
							| 9 | 8 | eqeq1d | ⊢ ( 𝑛  =  ( 0g ‘ 𝐺 )  →  ( ( 𝑛  +  𝑥 )  =  𝑥  ↔  ( ( 0g ‘ 𝐺 )  +  𝑥 )  =  𝑥 ) ) | 
						
							| 10 |  | eqeq2 | ⊢ ( 𝑛  =  ( 0g ‘ 𝐺 )  →  ( ( 𝑖  +  𝑥 )  =  𝑛  ↔  ( 𝑖  +  𝑥 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 11 | 10 | rexbidv | ⊢ ( 𝑛  =  ( 0g ‘ 𝐺 )  →  ( ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛  ↔  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 12 | 9 11 | anbi12d | ⊢ ( 𝑛  =  ( 0g ‘ 𝐺 )  →  ( ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 )  ↔  ( ( ( 0g ‘ 𝐺 )  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  ( 0g ‘ 𝐺 ) ) ) ) | 
						
							| 13 | 12 | ralbidv | ⊢ ( 𝑛  =  ( 0g ‘ 𝐺 )  →  ( ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 )  ↔  ∀ 𝑥  ∈  𝐵 ( ( ( 0g ‘ 𝐺 )  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  ( 0g ‘ 𝐺 ) ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑛  =  ( 0g ‘ 𝐺 ) )  →  ( ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 )  ↔  ∀ 𝑥  ∈  𝐵 ( ( ( 0g ‘ 𝐺 )  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  ( 0g ‘ 𝐺 ) ) ) ) | 
						
							| 15 | 1 2 5 | mndlid | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑥  ∈  𝐵 )  →  ( ( 0g ‘ 𝐺 )  +  𝑥 )  =  𝑥 ) | 
						
							| 16 | 4 15 | sylan | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝐵 )  →  ( ( 0g ‘ 𝐺 )  +  𝑥 )  =  𝑥 ) | 
						
							| 17 | 1 2 5 | grpinvex | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝐵 )  →  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 18 | 16 17 | jca | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝐵 )  →  ( ( ( 0g ‘ 𝐺 )  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 19 | 18 | ralrimiva | ⊢ ( 𝐺  ∈  Grp  →  ∀ 𝑥  ∈  𝐵 ( ( ( 0g ‘ 𝐺 )  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 20 | 7 14 19 | rspcedvd | ⊢ ( 𝐺  ∈  Grp  →  ∃ 𝑛  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 ) ) | 
						
							| 21 | 3 20 | jca | ⊢ ( 𝐺  ∈  Grp  →  ( 𝐺  ∈  Smgrp  ∧  ∃ 𝑛  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 ) ) ) | 
						
							| 22 | 1 | a1i | ⊢ ( ( ( 𝑛  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 ) )  ∧  𝐺  ∈  Smgrp )  →  𝐵  =  ( Base ‘ 𝐺 ) ) | 
						
							| 23 | 2 | a1i | ⊢ ( ( ( 𝑛  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 ) )  ∧  𝐺  ∈  Smgrp )  →   +   =  ( +g ‘ 𝐺 ) ) | 
						
							| 24 |  | sgrpmgm | ⊢ ( 𝐺  ∈  Smgrp  →  𝐺  ∈  Mgm ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ( 𝑛  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 ) )  ∧  𝐺  ∈  Smgrp )  →  𝐺  ∈  Mgm ) | 
						
							| 26 | 1 2 | mgmcl | ⊢ ( ( 𝐺  ∈  Mgm  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎  +  𝑏 )  ∈  𝐵 ) | 
						
							| 27 | 25 26 | syl3an1 | ⊢ ( ( ( ( 𝑛  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 ) )  ∧  𝐺  ∈  Smgrp )  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎  +  𝑏 )  ∈  𝐵 ) | 
						
							| 28 | 1 2 | sgrpass | ⊢ ( ( 𝐺  ∈  Smgrp  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐵 ) )  →  ( ( 𝑎  +  𝑏 )  +  𝑐 )  =  ( 𝑎  +  ( 𝑏  +  𝑐 ) ) ) | 
						
							| 29 | 28 | adantll | ⊢ ( ( ( ( 𝑛  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 ) )  ∧  𝐺  ∈  Smgrp )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐵 ) )  →  ( ( 𝑎  +  𝑏 )  +  𝑐 )  =  ( 𝑎  +  ( 𝑏  +  𝑐 ) ) ) | 
						
							| 30 |  | simpll | ⊢ ( ( ( 𝑛  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 ) )  ∧  𝐺  ∈  Smgrp )  →  𝑛  ∈  𝐵 ) | 
						
							| 31 |  | oveq2 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑛  +  𝑥 )  =  ( 𝑛  +  𝑎 ) ) | 
						
							| 32 |  | id | ⊢ ( 𝑥  =  𝑎  →  𝑥  =  𝑎 ) | 
						
							| 33 | 31 32 | eqeq12d | ⊢ ( 𝑥  =  𝑎  →  ( ( 𝑛  +  𝑥 )  =  𝑥  ↔  ( 𝑛  +  𝑎 )  =  𝑎 ) ) | 
						
							| 34 |  | oveq2 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑖  +  𝑥 )  =  ( 𝑖  +  𝑎 ) ) | 
						
							| 35 | 34 | eqeq1d | ⊢ ( 𝑥  =  𝑎  →  ( ( 𝑖  +  𝑥 )  =  𝑛  ↔  ( 𝑖  +  𝑎 )  =  𝑛 ) ) | 
						
							| 36 | 35 | rexbidv | ⊢ ( 𝑥  =  𝑎  →  ( ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛  ↔  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑎 )  =  𝑛 ) ) | 
						
							| 37 | 33 36 | anbi12d | ⊢ ( 𝑥  =  𝑎  →  ( ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 )  ↔  ( ( 𝑛  +  𝑎 )  =  𝑎  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑎 )  =  𝑛 ) ) ) | 
						
							| 38 | 37 | rspcv | ⊢ ( 𝑎  ∈  𝐵  →  ( ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 )  →  ( ( 𝑛  +  𝑎 )  =  𝑎  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑎 )  =  𝑛 ) ) ) | 
						
							| 39 |  | simpl | ⊢ ( ( ( 𝑛  +  𝑎 )  =  𝑎  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑎 )  =  𝑛 )  →  ( 𝑛  +  𝑎 )  =  𝑎 ) | 
						
							| 40 | 38 39 | syl6com | ⊢ ( ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 )  →  ( 𝑎  ∈  𝐵  →  ( 𝑛  +  𝑎 )  =  𝑎 ) ) | 
						
							| 41 | 40 | ad2antlr | ⊢ ( ( ( 𝑛  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 ) )  ∧  𝐺  ∈  Smgrp )  →  ( 𝑎  ∈  𝐵  →  ( 𝑛  +  𝑎 )  =  𝑎 ) ) | 
						
							| 42 | 41 | imp | ⊢ ( ( ( ( 𝑛  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 ) )  ∧  𝐺  ∈  Smgrp )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑛  +  𝑎 )  =  𝑎 ) | 
						
							| 43 |  | oveq1 | ⊢ ( 𝑖  =  𝑏  →  ( 𝑖  +  𝑎 )  =  ( 𝑏  +  𝑎 ) ) | 
						
							| 44 | 43 | eqeq1d | ⊢ ( 𝑖  =  𝑏  →  ( ( 𝑖  +  𝑎 )  =  𝑛  ↔  ( 𝑏  +  𝑎 )  =  𝑛 ) ) | 
						
							| 45 | 44 | cbvrexvw | ⊢ ( ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑎 )  =  𝑛  ↔  ∃ 𝑏  ∈  𝐵 ( 𝑏  +  𝑎 )  =  𝑛 ) | 
						
							| 46 | 45 | biimpi | ⊢ ( ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑎 )  =  𝑛  →  ∃ 𝑏  ∈  𝐵 ( 𝑏  +  𝑎 )  =  𝑛 ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( ( 𝑛  +  𝑎 )  =  𝑎  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑎 )  =  𝑛 )  →  ∃ 𝑏  ∈  𝐵 ( 𝑏  +  𝑎 )  =  𝑛 ) | 
						
							| 48 | 38 47 | syl6com | ⊢ ( ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 )  →  ( 𝑎  ∈  𝐵  →  ∃ 𝑏  ∈  𝐵 ( 𝑏  +  𝑎 )  =  𝑛 ) ) | 
						
							| 49 | 48 | ad2antlr | ⊢ ( ( ( 𝑛  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 ) )  ∧  𝐺  ∈  Smgrp )  →  ( 𝑎  ∈  𝐵  →  ∃ 𝑏  ∈  𝐵 ( 𝑏  +  𝑎 )  =  𝑛 ) ) | 
						
							| 50 | 49 | imp | ⊢ ( ( ( ( 𝑛  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 ) )  ∧  𝐺  ∈  Smgrp )  ∧  𝑎  ∈  𝐵 )  →  ∃ 𝑏  ∈  𝐵 ( 𝑏  +  𝑎 )  =  𝑛 ) | 
						
							| 51 | 22 23 27 29 30 42 50 | isgrpde | ⊢ ( ( ( 𝑛  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 ) )  ∧  𝐺  ∈  Smgrp )  →  𝐺  ∈  Grp ) | 
						
							| 52 | 51 | ex | ⊢ ( ( 𝑛  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 ) )  →  ( 𝐺  ∈  Smgrp  →  𝐺  ∈  Grp ) ) | 
						
							| 53 | 52 | rexlimiva | ⊢ ( ∃ 𝑛  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 )  →  ( 𝐺  ∈  Smgrp  →  𝐺  ∈  Grp ) ) | 
						
							| 54 | 53 | impcom | ⊢ ( ( 𝐺  ∈  Smgrp  ∧  ∃ 𝑛  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 ) )  →  𝐺  ∈  Grp ) | 
						
							| 55 | 21 54 | impbii | ⊢ ( 𝐺  ∈  Grp  ↔  ( 𝐺  ∈  Smgrp  ∧  ∃ 𝑛  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 ) ) ) |