| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfgrp2.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | dfgrp2.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 | 1 2 | dfgrp2 | ⊢ ( 𝐺  ∈  Grp  ↔  ( 𝐺  ∈  Smgrp  ∧  ∃ 𝑛  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 ) ) ) | 
						
							| 4 |  | ax-1 | ⊢ ( 𝐺  ∈  V  →  ( 𝑛  ∈  𝐵  →  𝐺  ∈  V ) ) | 
						
							| 5 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  ( Base ‘ 𝐺 )  =  ∅ ) | 
						
							| 6 | 1 | eleq2i | ⊢ ( 𝑛  ∈  𝐵  ↔  𝑛  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 7 |  | eleq2 | ⊢ ( ( Base ‘ 𝐺 )  =  ∅  →  ( 𝑛  ∈  ( Base ‘ 𝐺 )  ↔  𝑛  ∈  ∅ ) ) | 
						
							| 8 |  | noel | ⊢ ¬  𝑛  ∈  ∅ | 
						
							| 9 | 8 | pm2.21i | ⊢ ( 𝑛  ∈  ∅  →  𝐺  ∈  V ) | 
						
							| 10 | 7 9 | biimtrdi | ⊢ ( ( Base ‘ 𝐺 )  =  ∅  →  ( 𝑛  ∈  ( Base ‘ 𝐺 )  →  𝐺  ∈  V ) ) | 
						
							| 11 | 6 10 | biimtrid | ⊢ ( ( Base ‘ 𝐺 )  =  ∅  →  ( 𝑛  ∈  𝐵  →  𝐺  ∈  V ) ) | 
						
							| 12 | 5 11 | syl | ⊢ ( ¬  𝐺  ∈  V  →  ( 𝑛  ∈  𝐵  →  𝐺  ∈  V ) ) | 
						
							| 13 | 4 12 | pm2.61i | ⊢ ( 𝑛  ∈  𝐵  →  𝐺  ∈  V ) | 
						
							| 14 | 13 | a1d | ⊢ ( 𝑛  ∈  𝐵  →  ( ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 )  →  𝐺  ∈  V ) ) | 
						
							| 15 | 14 | rexlimiv | ⊢ ( ∃ 𝑛  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 )  →  𝐺  ∈  V ) | 
						
							| 16 | 1 2 | issgrpv | ⊢ ( 𝐺  ∈  V  →  ( 𝐺  ∈  Smgrp  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑥  +  𝑦 )  ∈  𝐵  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ∃ 𝑛  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 )  →  ( 𝐺  ∈  Smgrp  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑥  +  𝑦 )  ∈  𝐵  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) ) ) | 
						
							| 18 | 17 | pm5.32ri | ⊢ ( ( 𝐺  ∈  Smgrp  ∧  ∃ 𝑛  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 ) )  ↔  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑥  +  𝑦 )  ∈  𝐵  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) )  ∧  ∃ 𝑛  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 ) ) ) | 
						
							| 19 | 3 18 | bitri | ⊢ ( 𝐺  ∈  Grp  ↔  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑥  +  𝑦 )  ∈  𝐵  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) )  ∧  ∃ 𝑛  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑛  +  𝑥 )  =  𝑥  ∧  ∃ 𝑖  ∈  𝐵 ( 𝑖  +  𝑥 )  =  𝑛 ) ) ) |