| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfgrp3.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
dfgrp3.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
grpsgrp |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Smgrp ) |
| 4 |
1
|
grpbn0 |
⊢ ( 𝐺 ∈ Grp → 𝐵 ≠ ∅ ) |
| 5 |
|
simpl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
| 6 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
| 8 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
| 10 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
| 11 |
1 10
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝐵 ) |
| 12 |
5 7 9 11
|
syl3anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝐵 ) |
| 13 |
|
oveq1 |
⊢ ( 𝑙 = ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) → ( 𝑙 + 𝑥 ) = ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) + 𝑥 ) ) |
| 14 |
13
|
eqeq1d |
⊢ ( 𝑙 = ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) → ( ( 𝑙 + 𝑥 ) = 𝑦 ↔ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) + 𝑥 ) = 𝑦 ) ) |
| 15 |
14
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑙 = ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ) → ( ( 𝑙 + 𝑥 ) = 𝑦 ↔ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) + 𝑥 ) = 𝑦 ) ) |
| 16 |
1 2 10
|
grpnpcan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) + 𝑥 ) = 𝑦 ) |
| 17 |
5 7 9 16
|
syl3anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) + 𝑥 ) = 𝑦 ) |
| 18 |
12 15 17
|
rspcedvd |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ) |
| 19 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 20 |
1 19
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 21 |
20
|
adantrr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 22 |
1 2 5 21 7
|
grpcld |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ∈ 𝐵 ) |
| 23 |
|
oveq2 |
⊢ ( 𝑟 = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) → ( 𝑥 + 𝑟 ) = ( 𝑥 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) ) |
| 24 |
23
|
eqeq1d |
⊢ ( 𝑟 = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) → ( ( 𝑥 + 𝑟 ) = 𝑦 ↔ ( 𝑥 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) = 𝑦 ) ) |
| 25 |
24
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑟 = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) → ( ( 𝑥 + 𝑟 ) = 𝑦 ↔ ( 𝑥 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) = 𝑦 ) ) |
| 26 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 27 |
1 2 26 19
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 0g ‘ 𝐺 ) ) |
| 28 |
27
|
adantrr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 0g ‘ 𝐺 ) ) |
| 29 |
28
|
oveq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) + 𝑦 ) = ( ( 0g ‘ 𝐺 ) + 𝑦 ) ) |
| 30 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) + 𝑦 ) = ( 𝑥 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) ) |
| 31 |
5 9 21 7 30
|
syl13anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) + 𝑦 ) = ( 𝑥 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) ) |
| 32 |
|
grpmnd |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |
| 33 |
1 2 26
|
mndlid |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ) |
| 34 |
32 6 33
|
syl2an |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ) |
| 35 |
29 31 34
|
3eqtr3d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) = 𝑦 ) |
| 36 |
22 25 35
|
rspcedvd |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) |
| 37 |
18 36
|
jca |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) |
| 38 |
37
|
ralrimivva |
⊢ ( 𝐺 ∈ Grp → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) |
| 39 |
3 4 38
|
3jca |
⊢ ( 𝐺 ∈ Grp → ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) |
| 40 |
|
simp1 |
⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → 𝐺 ∈ Smgrp ) |
| 41 |
1 2
|
dfgrp3lem |
⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ∃ 𝑢 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑢 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) ) |
| 42 |
1 2
|
dfgrp2 |
⊢ ( 𝐺 ∈ Grp ↔ ( 𝐺 ∈ Smgrp ∧ ∃ 𝑢 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑢 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) ) ) |
| 43 |
40 41 42
|
sylanbrc |
⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → 𝐺 ∈ Grp ) |
| 44 |
39 43
|
impbii |
⊢ ( 𝐺 ∈ Grp ↔ ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) |