Step |
Hyp |
Ref |
Expression |
1 |
|
dfgrp3.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
dfgrp3.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
grpsgrp |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Smgrp ) |
4 |
1
|
grpbn0 |
⊢ ( 𝐺 ∈ Grp → 𝐵 ≠ ∅ ) |
5 |
|
simpl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
6 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
7 |
6
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
8 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
9 |
8
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
10 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
11 |
1 10
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝐵 ) |
12 |
5 7 9 11
|
syl3anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝐵 ) |
13 |
|
oveq1 |
⊢ ( 𝑙 = ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) → ( 𝑙 + 𝑥 ) = ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) + 𝑥 ) ) |
14 |
13
|
eqeq1d |
⊢ ( 𝑙 = ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) → ( ( 𝑙 + 𝑥 ) = 𝑦 ↔ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) + 𝑥 ) = 𝑦 ) ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑙 = ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ) → ( ( 𝑙 + 𝑥 ) = 𝑦 ↔ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) + 𝑥 ) = 𝑦 ) ) |
16 |
1 2 10
|
grpnpcan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) + 𝑥 ) = 𝑦 ) |
17 |
5 7 9 16
|
syl3anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) + 𝑥 ) = 𝑦 ) |
18 |
12 15 17
|
rspcedvd |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ) |
19 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
20 |
1 19
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) |
21 |
20
|
adantrr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) |
22 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ∈ 𝐵 ) |
23 |
5 21 7 22
|
syl3anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ∈ 𝐵 ) |
24 |
|
oveq2 |
⊢ ( 𝑟 = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) → ( 𝑥 + 𝑟 ) = ( 𝑥 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) ) |
25 |
24
|
eqeq1d |
⊢ ( 𝑟 = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) → ( ( 𝑥 + 𝑟 ) = 𝑦 ↔ ( 𝑥 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) = 𝑦 ) ) |
26 |
25
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑟 = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) → ( ( 𝑥 + 𝑟 ) = 𝑦 ↔ ( 𝑥 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) = 𝑦 ) ) |
27 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
28 |
1 2 27 19
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 0g ‘ 𝐺 ) ) |
29 |
28
|
adantrr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 0g ‘ 𝐺 ) ) |
30 |
29
|
oveq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) + 𝑦 ) = ( ( 0g ‘ 𝐺 ) + 𝑦 ) ) |
31 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) + 𝑦 ) = ( 𝑥 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) ) |
32 |
5 9 21 7 31
|
syl13anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) + 𝑦 ) = ( 𝑥 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) ) |
33 |
|
grpmnd |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |
34 |
1 2 27
|
mndlid |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ) |
35 |
33 6 34
|
syl2an |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ) |
36 |
30 32 35
|
3eqtr3d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) = 𝑦 ) |
37 |
23 26 36
|
rspcedvd |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) |
38 |
18 37
|
jca |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) |
39 |
38
|
ralrimivva |
⊢ ( 𝐺 ∈ Grp → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) |
40 |
3 4 39
|
3jca |
⊢ ( 𝐺 ∈ Grp → ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) |
41 |
|
simp1 |
⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → 𝐺 ∈ Smgrp ) |
42 |
1 2
|
dfgrp3lem |
⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ∃ 𝑢 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑢 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) ) |
43 |
1 2
|
dfgrp2 |
⊢ ( 𝐺 ∈ Grp ↔ ( 𝐺 ∈ Smgrp ∧ ∃ 𝑢 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑢 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) ) ) |
44 |
41 42 43
|
sylanbrc |
⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → 𝐺 ∈ Grp ) |
45 |
40 44
|
impbii |
⊢ ( 𝐺 ∈ Grp ↔ ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) |