| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfgrp3.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
dfgrp3.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
simp2 |
⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → 𝐵 ≠ ∅ ) |
| 4 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝐵 ) |
| 5 |
3 4
|
sylib |
⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ∃ 𝑤 𝑤 ∈ 𝐵 ) |
| 6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑙 + 𝑥 ) = ( 𝑙 + 𝑤 ) ) |
| 7 |
6
|
eqeq1d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑙 + 𝑥 ) = 𝑦 ↔ ( 𝑙 + 𝑤 ) = 𝑦 ) ) |
| 8 |
7
|
rexbidv |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ↔ ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ) ) |
| 9 |
|
oveq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 + 𝑟 ) = ( 𝑤 + 𝑟 ) ) |
| 10 |
9
|
eqeq1d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 + 𝑟 ) = 𝑦 ↔ ( 𝑤 + 𝑟 ) = 𝑦 ) ) |
| 11 |
10
|
rexbidv |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ↔ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ) ) |
| 12 |
8 11
|
anbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ↔ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ) ) ) |
| 13 |
12
|
ralbidv |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ) ) ) |
| 14 |
13
|
rspcv |
⊢ ( 𝑤 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) → ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ) ) ) |
| 15 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑙 + 𝑤 ) = 𝑦 ↔ ( 𝑙 + 𝑤 ) = 𝑤 ) ) |
| 16 |
15
|
rexbidv |
⊢ ( 𝑦 = 𝑤 → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ↔ ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑤 ) ) |
| 17 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑤 + 𝑟 ) = 𝑦 ↔ ( 𝑤 + 𝑟 ) = 𝑤 ) ) |
| 18 |
17
|
rexbidv |
⊢ ( 𝑦 = 𝑤 → ( ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ↔ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑤 ) ) |
| 19 |
16 18
|
anbi12d |
⊢ ( 𝑦 = 𝑤 → ( ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ) ↔ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑤 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑤 ) ) ) |
| 20 |
19
|
rspcva |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ) ) → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑤 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑤 ) ) |
| 21 |
|
oveq1 |
⊢ ( 𝑙 = 𝑢 → ( 𝑙 + 𝑤 ) = ( 𝑢 + 𝑤 ) ) |
| 22 |
21
|
eqeq1d |
⊢ ( 𝑙 = 𝑢 → ( ( 𝑙 + 𝑤 ) = 𝑤 ↔ ( 𝑢 + 𝑤 ) = 𝑤 ) ) |
| 23 |
22
|
cbvrexvw |
⊢ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑤 ↔ ∃ 𝑢 ∈ 𝐵 ( 𝑢 + 𝑤 ) = 𝑤 ) |
| 24 |
23
|
biimpi |
⊢ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑤 → ∃ 𝑢 ∈ 𝐵 ( 𝑢 + 𝑤 ) = 𝑤 ) |
| 25 |
24
|
adantr |
⊢ ( ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑤 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑤 ) → ∃ 𝑢 ∈ 𝐵 ( 𝑢 + 𝑤 ) = 𝑤 ) |
| 26 |
20 25
|
syl |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ) ) → ∃ 𝑢 ∈ 𝐵 ( 𝑢 + 𝑤 ) = 𝑤 ) |
| 27 |
26
|
ex |
⊢ ( 𝑤 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ) → ∃ 𝑢 ∈ 𝐵 ( 𝑢 + 𝑤 ) = 𝑤 ) ) |
| 28 |
14 27
|
syldc |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) → ( 𝑤 ∈ 𝐵 → ∃ 𝑢 ∈ 𝐵 ( 𝑢 + 𝑤 ) = 𝑤 ) ) |
| 29 |
28
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ( 𝑤 ∈ 𝐵 → ∃ 𝑢 ∈ 𝐵 ( 𝑢 + 𝑤 ) = 𝑤 ) ) |
| 30 |
29
|
imp |
⊢ ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) → ∃ 𝑢 ∈ 𝐵 ( 𝑢 + 𝑤 ) = 𝑤 ) |
| 31 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑎 → ( ( 𝑙 + 𝑤 ) = 𝑦 ↔ ( 𝑙 + 𝑤 ) = 𝑎 ) ) |
| 32 |
31
|
rexbidv |
⊢ ( 𝑦 = 𝑎 → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ↔ ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑎 ) ) |
| 33 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑎 → ( ( 𝑤 + 𝑟 ) = 𝑦 ↔ ( 𝑤 + 𝑟 ) = 𝑎 ) ) |
| 34 |
33
|
rexbidv |
⊢ ( 𝑦 = 𝑎 → ( ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ↔ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 ) ) |
| 35 |
32 34
|
anbi12d |
⊢ ( 𝑦 = 𝑎 → ( ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ) ↔ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑎 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 ) ) ) |
| 36 |
12 35
|
rspc2va |
⊢ ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑎 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 ) ) |
| 37 |
36
|
simprd |
⊢ ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 ) |
| 38 |
37
|
expcom |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) → ( ( 𝑤 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 ) ) |
| 39 |
38
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ( ( 𝑤 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 ) ) |
| 40 |
39
|
impl |
⊢ ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) → ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 ) |
| 41 |
40
|
ad2ant2r |
⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ( 𝑢 + 𝑤 ) = 𝑤 ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 ) |
| 42 |
|
oveq2 |
⊢ ( 𝑟 = 𝑧 → ( 𝑤 + 𝑟 ) = ( 𝑤 + 𝑧 ) ) |
| 43 |
42
|
eqeq1d |
⊢ ( 𝑟 = 𝑧 → ( ( 𝑤 + 𝑟 ) = 𝑎 ↔ ( 𝑤 + 𝑧 ) = 𝑎 ) ) |
| 44 |
43
|
cbvrexvw |
⊢ ( ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑤 + 𝑧 ) = 𝑎 ) |
| 45 |
|
simpll1 |
⊢ ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) → 𝐺 ∈ Smgrp ) |
| 46 |
45
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( ( 𝑢 + 𝑤 ) = 𝑤 ∧ 𝑧 ∈ 𝐵 ) ) → 𝐺 ∈ Smgrp ) |
| 47 |
|
simplr |
⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( ( 𝑢 + 𝑤 ) = 𝑤 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑢 ∈ 𝐵 ) |
| 48 |
|
simpllr |
⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( ( 𝑢 + 𝑤 ) = 𝑤 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑤 ∈ 𝐵 ) |
| 49 |
|
simprr |
⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( ( 𝑢 + 𝑤 ) = 𝑤 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
| 50 |
1 2
|
sgrpass |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑢 + 𝑤 ) + 𝑧 ) = ( 𝑢 + ( 𝑤 + 𝑧 ) ) ) |
| 51 |
46 47 48 49 50
|
syl13anc |
⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( ( 𝑢 + 𝑤 ) = 𝑤 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑢 + 𝑤 ) + 𝑧 ) = ( 𝑢 + ( 𝑤 + 𝑧 ) ) ) |
| 52 |
|
simprl |
⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( ( 𝑢 + 𝑤 ) = 𝑤 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑢 + 𝑤 ) = 𝑤 ) |
| 53 |
52
|
oveq1d |
⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( ( 𝑢 + 𝑤 ) = 𝑤 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑢 + 𝑤 ) + 𝑧 ) = ( 𝑤 + 𝑧 ) ) |
| 54 |
51 53
|
eqtr3d |
⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( ( 𝑢 + 𝑤 ) = 𝑤 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑢 + ( 𝑤 + 𝑧 ) ) = ( 𝑤 + 𝑧 ) ) |
| 55 |
54
|
anassrs |
⊢ ( ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 + 𝑤 ) = 𝑤 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑢 + ( 𝑤 + 𝑧 ) ) = ( 𝑤 + 𝑧 ) ) |
| 56 |
|
oveq2 |
⊢ ( ( 𝑤 + 𝑧 ) = 𝑎 → ( 𝑢 + ( 𝑤 + 𝑧 ) ) = ( 𝑢 + 𝑎 ) ) |
| 57 |
|
id |
⊢ ( ( 𝑤 + 𝑧 ) = 𝑎 → ( 𝑤 + 𝑧 ) = 𝑎 ) |
| 58 |
56 57
|
eqeq12d |
⊢ ( ( 𝑤 + 𝑧 ) = 𝑎 → ( ( 𝑢 + ( 𝑤 + 𝑧 ) ) = ( 𝑤 + 𝑧 ) ↔ ( 𝑢 + 𝑎 ) = 𝑎 ) ) |
| 59 |
55 58
|
syl5ibcom |
⊢ ( ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 + 𝑤 ) = 𝑤 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑤 + 𝑧 ) = 𝑎 → ( 𝑢 + 𝑎 ) = 𝑎 ) ) |
| 60 |
59
|
rexlimdva |
⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 + 𝑤 ) = 𝑤 ) → ( ∃ 𝑧 ∈ 𝐵 ( 𝑤 + 𝑧 ) = 𝑎 → ( 𝑢 + 𝑎 ) = 𝑎 ) ) |
| 61 |
44 60
|
biimtrid |
⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 + 𝑤 ) = 𝑤 ) → ( ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 → ( 𝑢 + 𝑎 ) = 𝑎 ) ) |
| 62 |
61
|
adantrl |
⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ( 𝑢 + 𝑤 ) = 𝑤 ) ) → ( ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 → ( 𝑢 + 𝑎 ) = 𝑎 ) ) |
| 63 |
41 62
|
mpd |
⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ( 𝑢 + 𝑤 ) = 𝑤 ) ) → ( 𝑢 + 𝑎 ) = 𝑎 ) |
| 64 |
|
oveq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝑙 + 𝑥 ) = ( 𝑙 + 𝑎 ) ) |
| 65 |
64
|
eqeq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑙 + 𝑥 ) = 𝑦 ↔ ( 𝑙 + 𝑎 ) = 𝑦 ) ) |
| 66 |
65
|
rexbidv |
⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ↔ ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑦 ) ) |
| 67 |
|
oveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 + 𝑟 ) = ( 𝑎 + 𝑟 ) ) |
| 68 |
67
|
eqeq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 + 𝑟 ) = 𝑦 ↔ ( 𝑎 + 𝑟 ) = 𝑦 ) ) |
| 69 |
68
|
rexbidv |
⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ↔ ∃ 𝑟 ∈ 𝐵 ( 𝑎 + 𝑟 ) = 𝑦 ) ) |
| 70 |
66 69
|
anbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ↔ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑎 + 𝑟 ) = 𝑦 ) ) ) |
| 71 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑢 → ( ( 𝑙 + 𝑎 ) = 𝑦 ↔ ( 𝑙 + 𝑎 ) = 𝑢 ) ) |
| 72 |
71
|
rexbidv |
⊢ ( 𝑦 = 𝑢 → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑦 ↔ ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑢 ) ) |
| 73 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑢 → ( ( 𝑎 + 𝑟 ) = 𝑦 ↔ ( 𝑎 + 𝑟 ) = 𝑢 ) ) |
| 74 |
73
|
rexbidv |
⊢ ( 𝑦 = 𝑢 → ( ∃ 𝑟 ∈ 𝐵 ( 𝑎 + 𝑟 ) = 𝑦 ↔ ∃ 𝑟 ∈ 𝐵 ( 𝑎 + 𝑟 ) = 𝑢 ) ) |
| 75 |
72 74
|
anbi12d |
⊢ ( 𝑦 = 𝑢 → ( ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑎 + 𝑟 ) = 𝑦 ) ↔ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑢 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑎 + 𝑟 ) = 𝑢 ) ) ) |
| 76 |
70 75
|
rspc2va |
⊢ ( ( ( 𝑎 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑢 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑎 + 𝑟 ) = 𝑢 ) ) |
| 77 |
76
|
simpld |
⊢ ( ( ( 𝑎 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑢 ) |
| 78 |
77
|
ex |
⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) → ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑢 ) ) |
| 79 |
78
|
ancoms |
⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) → ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑢 ) ) |
| 80 |
79
|
com12 |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) → ( ( 𝑢 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑢 ) ) |
| 81 |
80
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ( ( 𝑢 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑢 ) ) |
| 82 |
81
|
impl |
⊢ ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) → ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑢 ) |
| 83 |
|
oveq1 |
⊢ ( 𝑙 = 𝑖 → ( 𝑙 + 𝑎 ) = ( 𝑖 + 𝑎 ) ) |
| 84 |
83
|
eqeq1d |
⊢ ( 𝑙 = 𝑖 → ( ( 𝑙 + 𝑎 ) = 𝑢 ↔ ( 𝑖 + 𝑎 ) = 𝑢 ) ) |
| 85 |
84
|
cbvrexvw |
⊢ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑢 ↔ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) |
| 86 |
82 85
|
sylib |
⊢ ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) → ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) |
| 87 |
86
|
adantllr |
⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) → ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) |
| 88 |
87
|
adantrr |
⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ( 𝑢 + 𝑤 ) = 𝑤 ) ) → ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) |
| 89 |
63 88
|
jca |
⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ( 𝑢 + 𝑤 ) = 𝑤 ) ) → ( ( 𝑢 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) ) |
| 90 |
89
|
expr |
⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑢 + 𝑤 ) = 𝑤 → ( ( 𝑢 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) ) ) |
| 91 |
90
|
ralrimdva |
⊢ ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) → ( ( 𝑢 + 𝑤 ) = 𝑤 → ∀ 𝑎 ∈ 𝐵 ( ( 𝑢 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) ) ) |
| 92 |
91
|
reximdva |
⊢ ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) → ( ∃ 𝑢 ∈ 𝐵 ( 𝑢 + 𝑤 ) = 𝑤 → ∃ 𝑢 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑢 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) ) ) |
| 93 |
30 92
|
mpd |
⊢ ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) → ∃ 𝑢 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑢 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) ) |
| 94 |
5 93
|
exlimddv |
⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ∃ 𝑢 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑢 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) ) |