Description: The identity function expressed using maps-to notation. (Contributed by Scott Fenton, 15-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfid4 | ⊢ I = ( 𝑥 ∈ V ↦ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcom | ⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 2 | biantrur | ⊢ ( 𝑦 = 𝑥 ↔ ( 𝑥 ∈ V ∧ 𝑦 = 𝑥 ) ) |
| 4 | 1 3 | bitri | ⊢ ( 𝑥 = 𝑦 ↔ ( 𝑥 ∈ V ∧ 𝑦 = 𝑥 ) ) |
| 5 | 4 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 = 𝑦 } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ V ∧ 𝑦 = 𝑥 ) } |
| 6 | df-id | ⊢ I = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 = 𝑦 } | |
| 7 | df-mpt | ⊢ ( 𝑥 ∈ V ↦ 𝑥 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ V ∧ 𝑦 = 𝑥 ) } | |
| 8 | 5 6 7 | 3eqtr4i | ⊢ I = ( 𝑥 ∈ V ↦ 𝑥 ) |