Step |
Hyp |
Ref |
Expression |
1 |
|
dfif3.1 |
⊢ 𝐶 = { 𝑥 ∣ 𝜑 } |
2 |
1
|
dfif3 |
⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = ( ( 𝐴 ∩ 𝐶 ) ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) |
3 |
|
undir |
⊢ ( ( 𝐴 ∩ 𝐶 ) ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) ∩ ( 𝐶 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) ) |
4 |
|
undi |
⊢ ( 𝐴 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) |
5 |
|
undi |
⊢ ( 𝐶 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐶 ∪ 𝐵 ) ∩ ( 𝐶 ∪ ( V ∖ 𝐶 ) ) ) |
6 |
|
uncom |
⊢ ( 𝐶 ∪ 𝐵 ) = ( 𝐵 ∪ 𝐶 ) |
7 |
|
unvdif |
⊢ ( 𝐶 ∪ ( V ∖ 𝐶 ) ) = V |
8 |
6 7
|
ineq12i |
⊢ ( ( 𝐶 ∪ 𝐵 ) ∩ ( 𝐶 ∪ ( V ∖ 𝐶 ) ) ) = ( ( 𝐵 ∪ 𝐶 ) ∩ V ) |
9 |
|
inv1 |
⊢ ( ( 𝐵 ∪ 𝐶 ) ∩ V ) = ( 𝐵 ∪ 𝐶 ) |
10 |
5 8 9
|
3eqtri |
⊢ ( 𝐶 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( 𝐵 ∪ 𝐶 ) |
11 |
4 10
|
ineq12i |
⊢ ( ( 𝐴 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) ∩ ( 𝐶 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) ) = ( ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) |
12 |
|
inass |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) ) |
13 |
11 12
|
eqtri |
⊢ ( ( 𝐴 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) ∩ ( 𝐶 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) ) |
14 |
2 3 13
|
3eqtri |
⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) ) |