Step |
Hyp |
Ref |
Expression |
1 |
|
dfif3.1 |
⊢ 𝐶 = { 𝑥 ∣ 𝜑 } |
2 |
|
inindi |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) ) = ( ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) ∩ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐵 ∪ 𝐶 ) ) ) |
3 |
1
|
dfif4 |
⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) ) |
4 |
|
undir |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) = ( ( 𝐴 ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) ∩ ( 𝐵 ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) ) |
5 |
|
unidm |
⊢ ( 𝐴 ∪ 𝐴 ) = 𝐴 |
6 |
5
|
uneq1i |
⊢ ( ( 𝐴 ∪ 𝐴 ) ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( 𝐴 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) |
7 |
|
unass |
⊢ ( ( 𝐴 ∪ 𝐴 ) ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( 𝐴 ∪ ( 𝐴 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) ) |
8 |
|
undi |
⊢ ( 𝐴 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) |
9 |
6 7 8
|
3eqtr3ri |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) = ( 𝐴 ∪ ( 𝐴 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) ) |
10 |
|
undi |
⊢ ( 𝐴 ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) = ( ( 𝐴 ∪ ( 𝐴 ∖ 𝐵 ) ) ∩ ( 𝐴 ∪ 𝐶 ) ) |
11 |
|
undifabs |
⊢ ( 𝐴 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 |
12 |
11
|
ineq1i |
⊢ ( ( 𝐴 ∪ ( 𝐴 ∖ 𝐵 ) ) ∩ ( 𝐴 ∪ 𝐶 ) ) = ( 𝐴 ∩ ( 𝐴 ∪ 𝐶 ) ) |
13 |
|
inabs |
⊢ ( 𝐴 ∩ ( 𝐴 ∪ 𝐶 ) ) = 𝐴 |
14 |
10 12 13
|
3eqtri |
⊢ ( 𝐴 ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) = 𝐴 |
15 |
|
undif2 |
⊢ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = ( 𝐴 ∪ 𝐵 ) |
16 |
15
|
ineq1i |
⊢ ( ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) |
17 |
|
undi |
⊢ ( 𝐴 ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) |
18 |
16 17 8
|
3eqtr4i |
⊢ ( 𝐴 ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) = ( 𝐴 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) |
19 |
14 18
|
uneq12i |
⊢ ( ( 𝐴 ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) ∪ ( 𝐴 ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) = ( 𝐴 ∪ ( 𝐴 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) ) |
20 |
9 19
|
eqtr4i |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) ∪ ( 𝐴 ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) |
21 |
|
unundi |
⊢ ( 𝐴 ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) = ( ( 𝐴 ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) ∪ ( 𝐴 ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) |
22 |
20 21
|
eqtr4i |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) = ( 𝐴 ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) |
23 |
|
unass |
⊢ ( ( ( 𝐴 ∩ 𝐶 ) ∪ 𝐵 ) ∪ 𝐵 ) = ( ( 𝐴 ∩ 𝐶 ) ∪ ( 𝐵 ∪ 𝐵 ) ) |
24 |
|
undi |
⊢ ( 𝐵 ∪ ( 𝐴 ∩ 𝐶 ) ) = ( ( 𝐵 ∪ 𝐴 ) ∩ ( 𝐵 ∪ 𝐶 ) ) |
25 |
|
uncom |
⊢ ( ( 𝐴 ∩ 𝐶 ) ∪ 𝐵 ) = ( 𝐵 ∪ ( 𝐴 ∩ 𝐶 ) ) |
26 |
|
undif2 |
⊢ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐵 ∪ 𝐴 ) |
27 |
26
|
ineq1i |
⊢ ( ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐵 ∪ 𝐴 ) ∩ ( 𝐵 ∪ 𝐶 ) ) |
28 |
24 25 27
|
3eqtr4i |
⊢ ( ( 𝐴 ∩ 𝐶 ) ∪ 𝐵 ) = ( ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) |
29 |
|
undi |
⊢ ( 𝐵 ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) = ( ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) |
30 |
28 29
|
eqtr4i |
⊢ ( ( 𝐴 ∩ 𝐶 ) ∪ 𝐵 ) = ( 𝐵 ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) |
31 |
|
undi |
⊢ ( 𝐵 ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐵 ∪ ( 𝐵 ∖ 𝐴 ) ) ∩ ( 𝐵 ∪ ( V ∖ 𝐶 ) ) ) |
32 |
|
undifabs |
⊢ ( 𝐵 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 |
33 |
32
|
ineq1i |
⊢ ( ( 𝐵 ∪ ( 𝐵 ∖ 𝐴 ) ) ∩ ( 𝐵 ∪ ( V ∖ 𝐶 ) ) ) = ( 𝐵 ∩ ( 𝐵 ∪ ( V ∖ 𝐶 ) ) ) |
34 |
|
inabs |
⊢ ( 𝐵 ∩ ( 𝐵 ∪ ( V ∖ 𝐶 ) ) ) = 𝐵 |
35 |
31 33 34
|
3eqtrri |
⊢ 𝐵 = ( 𝐵 ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) |
36 |
30 35
|
uneq12i |
⊢ ( ( ( 𝐴 ∩ 𝐶 ) ∪ 𝐵 ) ∪ 𝐵 ) = ( ( 𝐵 ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) ∪ ( 𝐵 ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) |
37 |
|
unidm |
⊢ ( 𝐵 ∪ 𝐵 ) = 𝐵 |
38 |
37
|
uneq2i |
⊢ ( ( 𝐴 ∩ 𝐶 ) ∪ ( 𝐵 ∪ 𝐵 ) ) = ( ( 𝐴 ∩ 𝐶 ) ∪ 𝐵 ) |
39 |
23 36 38
|
3eqtr3ri |
⊢ ( ( 𝐴 ∩ 𝐶 ) ∪ 𝐵 ) = ( ( 𝐵 ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) ∪ ( 𝐵 ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) |
40 |
|
uncom |
⊢ ( 𝐵 ∪ 𝐶 ) = ( 𝐶 ∪ 𝐵 ) |
41 |
40
|
ineq2i |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐶 ∪ 𝐵 ) ) |
42 |
|
undir |
⊢ ( ( 𝐴 ∩ 𝐶 ) ∪ 𝐵 ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐶 ∪ 𝐵 ) ) |
43 |
41 42
|
eqtr4i |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 ∩ 𝐶 ) ∪ 𝐵 ) |
44 |
|
unundi |
⊢ ( 𝐵 ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) = ( ( 𝐵 ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) ∪ ( 𝐵 ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) |
45 |
39 43 44
|
3eqtr4i |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐵 ∪ 𝐶 ) ) = ( 𝐵 ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) |
46 |
22 45
|
ineq12i |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) ∩ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐵 ∪ 𝐶 ) ) ) = ( ( 𝐴 ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) ∩ ( 𝐵 ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) ) |
47 |
4 46
|
eqtr4i |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) = ( ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) ∩ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐵 ∪ 𝐶 ) ) ) |
48 |
2 3 47
|
3eqtr4i |
⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = ( ( 𝐴 ∩ 𝐵 ) ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) |