Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
2 |
1
|
anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) ) ) |
3 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
4 |
3
|
anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝜑 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝜑 ) ) ) |
5 |
2 4
|
unabw |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝜑 ) } ) = { 𝑦 ∣ ( ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) ∨ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝜑 ) ) } |
6 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } |
7 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐵 ∣ ¬ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝜑 ) } |
8 |
6 7
|
uneq12i |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐵 ∣ ¬ 𝜑 } ) = ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝜑 ) } ) |
9 |
|
df-if |
⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = { 𝑦 ∣ ( ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) ∨ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝜑 ) ) } |
10 |
5 8 9
|
3eqtr4ri |
⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐵 ∣ ¬ 𝜑 } ) |