Metamath Proof Explorer


Theorem dfifp2

Description: Alternate definition of the conditional operator for propositions. The value of if- ( ph , ps , ch ) is "if ph then ps , and if not ph then ch ". This is the definition used in Section II.24 of Church p. 129 (Definition D12 page 132) (see comment of df-ifp ). (Contributed by BJ, 22-Jun-2019)

Ref Expression
Assertion dfifp2 ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ ( ¬ 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 df-ifp ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑𝜒 ) ) )
2 cases2 ( ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ∧ ( ¬ 𝜑𝜒 ) ) )
3 1 2 bitri ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ ( ¬ 𝜑𝜒 ) ) )