Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 30-Sep-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | dfifp3 | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( 𝜑 ∨ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfifp2 | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) | |
2 | pm4.64 | ⊢ ( ( ¬ 𝜑 → 𝜒 ) ↔ ( 𝜑 ∨ 𝜒 ) ) | |
3 | 2 | anbi2i | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( 𝜑 ∨ 𝜒 ) ) ) |
4 | 1 3 | bitri | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( 𝜑 ∨ 𝜒 ) ) ) |