Metamath Proof Explorer


Theorem dfifp3

Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 30-Sep-2019)

Ref Expression
Assertion dfifp3 ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 dfifp2 ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ ( ¬ 𝜑𝜒 ) ) )
2 pm4.64 ( ( ¬ 𝜑𝜒 ) ↔ ( 𝜑𝜒 ) )
3 2 anbi2i ( ( ( 𝜑𝜓 ) ∧ ( ¬ 𝜑𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) )
4 1 3 bitri ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) )