Metamath Proof Explorer


Theorem dfifp6

Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 2-Oct-2019)

Ref Expression
Assertion dfifp6 ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ ¬ ( 𝜒𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 df-ifp ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑𝜒 ) ) )
2 ancom ( ( ¬ 𝜑𝜒 ) ↔ ( 𝜒 ∧ ¬ 𝜑 ) )
3 annim ( ( 𝜒 ∧ ¬ 𝜑 ) ↔ ¬ ( 𝜒𝜑 ) )
4 2 3 bitri ( ( ¬ 𝜑𝜒 ) ↔ ¬ ( 𝜒𝜑 ) )
5 4 orbi2i ( ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ∨ ¬ ( 𝜒𝜑 ) ) )
6 1 5 bitri ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ ¬ ( 𝜒𝜑 ) ) )