Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 2-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | dfifp6 | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ¬ ( 𝜒 → 𝜑 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ifp | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) | |
2 | ancom | ⊢ ( ( ¬ 𝜑 ∧ 𝜒 ) ↔ ( 𝜒 ∧ ¬ 𝜑 ) ) | |
3 | annim | ⊢ ( ( 𝜒 ∧ ¬ 𝜑 ) ↔ ¬ ( 𝜒 → 𝜑 ) ) | |
4 | 2 3 | bitri | ⊢ ( ( ¬ 𝜑 ∧ 𝜒 ) ↔ ¬ ( 𝜒 → 𝜑 ) ) |
5 | 4 | orbi2i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ¬ ( 𝜒 → 𝜑 ) ) ) |
6 | 1 5 | bitri | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ¬ ( 𝜒 → 𝜑 ) ) ) |