Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 2-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | dfifp7 | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜒 → 𝜑 ) → ( 𝜑 ∧ 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ¬ ( 𝜒 → 𝜑 ) ) ↔ ( ¬ ( 𝜒 → 𝜑 ) ∨ ( 𝜑 ∧ 𝜓 ) ) ) | |
2 | dfifp6 | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ¬ ( 𝜒 → 𝜑 ) ) ) | |
3 | imor | ⊢ ( ( ( 𝜒 → 𝜑 ) → ( 𝜑 ∧ 𝜓 ) ) ↔ ( ¬ ( 𝜒 → 𝜑 ) ∨ ( 𝜑 ∧ 𝜓 ) ) ) | |
4 | 1 2 3 | 3bitr4i | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜒 → 𝜑 ) → ( 𝜑 ∧ 𝜓 ) ) ) |