Metamath Proof Explorer


Theorem dfifp7

Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 2-Oct-2019)

Ref Expression
Assertion dfifp7 ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜒𝜑 ) → ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 orcom ( ( ( 𝜑𝜓 ) ∨ ¬ ( 𝜒𝜑 ) ) ↔ ( ¬ ( 𝜒𝜑 ) ∨ ( 𝜑𝜓 ) ) )
2 dfifp6 ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ ¬ ( 𝜒𝜑 ) ) )
3 imor ( ( ( 𝜒𝜑 ) → ( 𝜑𝜓 ) ) ↔ ( ¬ ( 𝜒𝜑 ) ∨ ( 𝜑𝜓 ) ) )
4 1 2 3 3bitr4i ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜒𝜑 ) → ( 𝜑𝜓 ) ) )