Metamath Proof Explorer


Theorem dfii2

Description: Alternate definition of the unit interval. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion dfii2 II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) )

Proof

Step Hyp Ref Expression
1 unitssre ( 0 [,] 1 ) ⊆ ℝ
2 eqid ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) )
3 df-ii II = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) )
4 2 3 resubmet ( ( 0 [,] 1 ) ⊆ ℝ → II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) )
5 1 4 ax-mp II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) )