| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfii3.1 | ⊢ 𝐽  =  ( TopOpen ‘ ℂfld ) | 
						
							| 2 |  | cnxmet | ⊢ ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ ) | 
						
							| 3 |  | unitssre | ⊢ ( 0 [,] 1 )  ⊆  ℝ | 
						
							| 4 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 5 | 3 4 | sstri | ⊢ ( 0 [,] 1 )  ⊆  ℂ | 
						
							| 6 |  | eqid | ⊢ ( ( abs  ∘   −  )  ↾  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  =  ( ( abs  ∘   −  )  ↾  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 7 | 1 | cnfldtopn | ⊢ 𝐽  =  ( MetOpen ‘ ( abs  ∘   −  ) ) | 
						
							| 8 |  | df-ii | ⊢ II  =  ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ) | 
						
							| 9 | 6 7 8 | metrest | ⊢ ( ( ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  ∧  ( 0 [,] 1 )  ⊆  ℂ )  →  ( 𝐽  ↾t  ( 0 [,] 1 ) )  =  II ) | 
						
							| 10 | 2 5 9 | mp2an | ⊢ ( 𝐽  ↾t  ( 0 [,] 1 ) )  =  II | 
						
							| 11 | 10 | eqcomi | ⊢ II  =  ( 𝐽  ↾t  ( 0 [,] 1 ) ) |