Description: Alternate definition of the unit interval. (Contributed by Mario Carneiro, 3-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dfii4.1 | ⊢ 𝐼 = ( ℂfld ↾s ( 0 [,] 1 ) ) | |
Assertion | dfii4 | ⊢ II = ( TopOpen ‘ 𝐼 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfii4.1 | ⊢ 𝐼 = ( ℂfld ↾s ( 0 [,] 1 ) ) | |
2 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
3 | 2 | dfii3 | ⊢ II = ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) |
4 | 1 2 | resstopn | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) = ( TopOpen ‘ 𝐼 ) |
5 | 3 4 | eqtri | ⊢ II = ( TopOpen ‘ 𝐼 ) |