Metamath Proof Explorer


Theorem dfii4

Description: Alternate definition of the unit interval. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis dfii4.1 𝐼 = ( ℂflds ( 0 [,] 1 ) )
Assertion dfii4 II = ( TopOpen ‘ 𝐼 )

Proof

Step Hyp Ref Expression
1 dfii4.1 𝐼 = ( ℂflds ( 0 [,] 1 ) )
2 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
3 2 dfii3 II = ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) )
4 1 2 resstopn ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) = ( TopOpen ‘ 𝐼 )
5 3 4 eqtri II = ( TopOpen ‘ 𝐼 )