| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfii2 | ⊢ II  =  ( ( topGen ‘ ran  (,) )  ↾t  ( 0 [,] 1 ) ) | 
						
							| 2 |  | unitssre | ⊢ ( 0 [,] 1 )  ⊆  ℝ | 
						
							| 3 |  | eqid | ⊢ ( ordTop ‘  ≤  )  =  ( ordTop ‘  ≤  ) | 
						
							| 4 |  | eqid | ⊢ ( topGen ‘ ran  (,) )  =  ( topGen ‘ ran  (,) ) | 
						
							| 5 | 3 4 | xrrest | ⊢ ( ( 0 [,] 1 )  ⊆  ℝ  →  ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,] 1 ) )  =  ( ( topGen ‘ ran  (,) )  ↾t  ( 0 [,] 1 ) ) ) | 
						
							| 6 | 2 5 | ax-mp | ⊢ ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,] 1 ) )  =  ( ( topGen ‘ ran  (,) )  ↾t  ( 0 [,] 1 ) ) | 
						
							| 7 |  | ordtresticc | ⊢ ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,] 1 ) )  =  ( ordTop ‘ (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ) | 
						
							| 8 | 1 6 7 | 3eqtr2i | ⊢ II  =  ( ordTop ‘ (  ≤   ∩  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ) |