Step |
Hyp |
Ref |
Expression |
1 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵 ) ) |
2 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶 ) ) |
3 |
|
eleq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝐵 ) ) |
4 |
3
|
biimprcd |
⊢ ( 𝑤 ∈ 𝐵 → ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) |
5 |
4
|
alrimiv |
⊢ ( 𝑤 ∈ 𝐵 → ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) |
6 |
|
eqid |
⊢ 𝐵 = 𝐵 |
7 |
|
eqeq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 = 𝐵 ↔ 𝐵 = 𝐵 ) ) |
8 |
7 3
|
imbi12d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ↔ ( 𝐵 = 𝐵 → 𝑤 ∈ 𝐵 ) ) ) |
9 |
8
|
spcgv |
⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) → ( 𝐵 = 𝐵 → 𝑤 ∈ 𝐵 ) ) ) |
10 |
6 9
|
mpii |
⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) → 𝑤 ∈ 𝐵 ) ) |
11 |
5 10
|
impbid2 |
⊢ ( 𝐵 ∈ 𝐶 → ( 𝑤 ∈ 𝐵 ↔ ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) |
12 |
11
|
imim2i |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝐵 ↔ ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) ) |
13 |
12
|
pm5.74d |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) ) |
14 |
13
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶 ) → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) ) |
15 |
|
albi |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) ) |
16 |
14 15
|
syl |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) ) |
17 |
2 16
|
sylbi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) ) |
18 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) |
19 |
18
|
albii |
⊢ ( ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) |
20 |
|
alcom |
⊢ ( ∀ 𝑥 ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ↔ ∀ 𝑧 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) |
21 |
19 20
|
bitr4i |
⊢ ( ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) |
22 |
|
r19.23v |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) |
23 |
|
vex |
⊢ 𝑧 ∈ V |
24 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 = 𝐵 ↔ 𝑧 = 𝐵 ) ) |
25 |
24
|
rexbidv |
⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) |
26 |
23 25
|
elab |
⊢ ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
27 |
26
|
imbi1i |
⊢ ( ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑤 ∈ 𝑧 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) |
28 |
22 27
|
bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ↔ ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑤 ∈ 𝑧 ) ) |
29 |
28
|
albii |
⊢ ( ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑤 ∈ 𝑧 ) ) |
30 |
|
19.21v |
⊢ ( ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) |
31 |
30
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) |
32 |
21 29 31
|
3bitr3ri |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑤 ∈ 𝑧 ) ) |
33 |
17 32
|
bitrdi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵 ) ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑤 ∈ 𝑧 ) ) ) |
34 |
1 33
|
bitrid |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑤 ∈ 𝑧 ) ) ) |
35 |
34
|
abbidv |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → { 𝑤 ∣ ∀ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 } = { 𝑤 ∣ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑤 ∈ 𝑧 ) } ) |
36 |
|
df-iin |
⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = { 𝑤 ∣ ∀ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 } |
37 |
|
df-int |
⊢ ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } = { 𝑤 ∣ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑤 ∈ 𝑧 ) } |
38 |
35 36 37
|
3eqtr4g |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |